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Abstract: Estimating causal effects from observational data requires (i) assump-
tions on the underlying data-generating process, such as a graphical causal model,
and (ii) an identification strategy for the causal effect of interest, such as covariate
adjustment. Both (i) and (ii) typically involve untestable assumptions, making it
crucial to be able to criticize or falsify the resulting effect estimates. This work
proposes one way to do so: Given a putative causal model and an observational
dataset, we first extract testable conditional independence relations from the
causal model. We then nonparametrically test those relations, potentially falsify-
ing the causal model, while controlling Type I error. We illustrate the approach
based on covariance measure tests, a family of regression-based nonparametric
conditional independence tests, by falsifying two causal models of protein inter-
actions using publicly available single cell flow cytometry data.
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1 Introduction

Estimating causal effects from observational data is an important, yet challenging
task, which requires a causal model and typically strong and untestable assump-
tions [Peters et al., 2017]. Scientists rely on subject matter knowledge to justify
these untestable assumptions and to identify and estimate the causal effect of
interest. In order for the resulting estimates to be trustworthy, it is important
to check testable implications of the causal model [Su and Henckel, 2022] or to
conduct sensitivity analyses [Cinelli et al., 2019]. Such testable implications of-
tentimes come in the form of conditional independence (CI) relations [Dawid,
1979], which (under the causal Markov condition) can be directly read off a
causal graphical model [Pearl, 2009], or are explicitly stated for (or encoded in
the functional form of) potential outcomes [Rubin, 1974].
In this work, we focus on testing CI relations implied by a causal model us-
ing nonparametric CI tests. Given a causal model and an observational dataset
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assumed to be generated by this causal model, we first extract testable CI re-
lations from the causal model and then perform nonparametric tests using the
observational data to find conditional dependencies which are inconsistent with
and thereby falsify the causal model, while controlling the rate of false rejections
(Type I error). A nonparametric approach is taken in order to avoid parametric
assumptions which may be inconsistent with the causal model in question. We use
covariance measure tests (COMETs, Section 2), a family of regression-based CI
tests [Kook and Lundborg, 2024] to falsify CI relations in functional proteomics
based on a publicly available flow cytometry dataset (Section 3). The validity of
these tests depends on the predictive performance of those regressions, and thus
relies crucially on principles from statistical modeling machine learning.

2 Covariance measure tests

We rely on nonparametric tests for the null hypothesis of conditional indepen-
dence H0 : X ⊥⊥ Y | Z, where (X,Y, Z) ∼ P , P ∈ P, and (X,Y, Z) ∈
RdX ×RdY ×RdZ . Without restricting P, conditional independence is untestable
in the sense that there exists no valid test with non-trivial power against arbitrary
alternatives [Shah and Peters, 2020]. However, it is still possible to devise valid
and powerful nonparametric tests for implications of H0 at the cost of having
power against restricted classes of alternatives.
In this work, we focus on two COMETs: The Generalised [GCM, Shah and Peters,
2020] and Projected Covariance Measure [PCM, Lundborg et al., 2024] tests. The
GCM test targets the following implication of H0,

HGCM
0 : E[Cov(X,Y | Z)] = E[(X − E[X | Z])(Y − E[Y | Z])] = 0,

while the PCM test, requiring dY = 1, targets the stronger null hypothesis of
conditional mean independence,

HPCM
0 : E[Y | X,Z] = E[Y | Z] =⇒ E[Cov(f(X,Z), Y | Z)] = 0,

where f(X,Z) := E[Y |X,Z]−E[Y |Z]
Var(Y |X,Z)

, and thus has power against a larger class of
alternatives than the GCM test. The assumptions for both tests to be valid rely
on the prediction performance of the involved conditional mean regressions (for
instance, E[Y | Z] and E[X | Z] for the GCM test) and are given in [Shah and
Peters, 2020, Theorem 6] and [Lundborg et al., 2024, Theorem 4], for the GCM
and PCM tests respectively. A less technical exposition of COMETs can be found
in Kook and Lundborg [2024].

3 Falsifying protein interaction networks

We apply the proposed falsification approach to two proposed causal graphical
models of the interactions between eleven proteins: A consensus graph based on
biological domain knowledge and a graph due to Sachs et al. [2005] (see Fig-
ure 1). To conduct the tests, we use a publicly available single cell flow cytome-
try dataset [Sachs et al., 2005] and the the comets [Kook and Lundborg, 2024],
ranger [Wright and Ziegler, 2017], and dagitty [Textor et al., 2016] R packages,
for testing, random forests, and listing CI relations, respectively. The R code to
reproduce all results is available at https://github.com/LucasKook/fcm-iwsm.
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FIGURE 1. Consensus (left) and Sachs (right) graph summarizing the putative
causal relations between the proteins.

Under the causal Markov condition [Peters et al., 2017, Definition 6.21], the two
graphs imply conditional independence relations in the observational distribution.
To limit the number of tests (and thus preserve power when applying multiple
testing corrections), we enumerate at least one CI relation per missing edge in
the graph with the smallest non-overlapping and non-empty conditioning sets.
This results in 55 CI relations implied by the consensus graph and 22 CI relations
implied by the Sachs graph. Using the observational dataset (853 observations
of log-transformed concentrations for all 11 proteins), we test those CI relations
using both the GCM and the PCM test with random forest regressions and adjust
for multiple testing using a Holm correction separately for each graph.
For the consensus graph, both the GCM and PCM test reject the same five out
of 55 CI relations at the 5% level, thereby falsifying the graph. Four of those
CI relations involve the conditional independence between Akt and Erk and the
following conditioning sets: {Mek, PKA}, {PKA, PKC}, {PIP2, PKA, PLCg},
and {PIP3, PKA}. The last rejected CI relation is JNK independent of p38 given
PKA and PKC. In the Sachs graph, the same (and only this one) CI relation
is rejected at the 5% level, again consistently by both the GCM and PCM test
(see Table 1). Thus, COMETs can identify CI relations in both graphs that are
inconsistent with the observed data.
Besides the observational data, Sachs et al. [2005] provide several interventional
datasets in which individual proteins (Akt, PIP2, Erk, PKC, PIP3) were per-
turbed. Assuming that these experimental conditions correspond to perfect inter-
ventions, the graph describing the interventional distribution can be constructed
from a given graph by removing all edges pointing to the intervened node [Pearl,
2009]. Under this assumption, the interventional datasets can serve as (pseudo-)
replications for assessing the validity of the results obtained on the observational
dataset: For all interventional datasets, the GCM (and, except for one case, also
the PCM) test consistently rejects only one CI relation implied by the resulting
interventional graph, namely that JNK is independent of p38 given PKA and
PKC, corroborating the results obtained on the observational data (Table 1).
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TABLE 1. Adjusted p-values for the conditional independence relations re-
jected at the 5%-level (after a Holm-adjustment separately for each graph) using
the GCM or PCM test with random forest regressions. For the interventional
datasets, the results are only shown for the Sachs graph.

Intervention Graph CI Relation GCM PCM

Consensus Akt ⊥⊥ Erk | Mek, PKA <0.0001 <0.0001
Consensus Akt ⊥⊥ Erk | PKA, PKC <0.0001 <0.0001
Consensus Akt ⊥⊥ Erk | PIP2, PKA, PLCg <0.0001 <0.0001
Consensus Akt ⊥⊥ Erk | PIP3, PKA <0.0001 <0.0001
Consensus JNK ⊥⊥ p38 | PKA, PKC <0.0001 <0.0001

Sachs JNK ⊥⊥ p38 | PKA, PKC <0.0001 <0.0001

Akt Sachs JNK ⊥⊥ p38 | PKA, PKC <0.0001 0.002
PIP2 Sachs JNK ⊥⊥ p38 | PKA, PKC <0.0001 <0.0001
Erk Sachs JNK ⊥⊥ p38 | PKA, PKC <0.0001 0.002
PKC Sachs JNK ⊥⊥ p38 | PKA, PKC <0.0001 1
PIP3 Sachs JNK ⊥⊥ p38 | PKA, PKC <0.0001 <0.0001

4 Discussion and conclusion

Using statistical modelling to answer causal research questions is a popular and
promising approach, but often relies on strong assumptions. If these assump-
tions are not met, the resulting causal inferences may be invalid and lead to
potentially harmful decisions. We propose to falsify conjectured causal models
by nonparametrically testing their implied CI relations with COMETs based
on observational (or, under stronger assumptions, also interventional) data. We
demonstrate the effectiveness of our approach on a well-studied protein signaling
pathway and single-cell flow cytometry data, by falsifying multiple CI relations
in the biological consensus graph and a single relation in the graph due to Sachs
et al. [2005]. Further analyses based on the available interventional datasets un-
derline the robustness of our conclusions that the Sachs graph still contains a CI
relation that is inconsistent with the data across several experimental settings.

References

Cinelli, C., Kumor, D., Chen, B., Pearl, J., and Bareinboim, E. (2019). Sensi-
tivity Analysis of Linear Structural Causal Models. In: Proceedings of
the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 1252 – 1261. PMLR.

Dawid, A.P. (1979). Conditional Independence in Statistical Theory. Journal of
the Royal Statistical Society B, 41(1):1 – 15.

Kook, L., and Lundborg, A.R. (2024). Algorithm-Agnostic Significance Testing
in Supervised Learning With Multimodal Data. Briefings in Bioinformat-
ics, 25(6).

Lundborg, A.R., Kim, I., Shah, R.D., and Samworth, R.J. (2024). The Pro-
jected Covariance Measure for Assumption-Lean Variable Significance
Testing. The Annals of Statistics.



Kook 233

Pearl, J. (2009). Causality. Cambridge university press.

Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of Causal Inference:
Foundations and Learning Algorithms. The MIT Press.

Rubin, D.B. (1974). Estimating Causal Effects of Treatments in Randomized and
Nonrandomized Studies. Journal of Educational Psychology, 66(5):688 –
701.

Sachs, K., Perez, O., Pe’er, O., Lauffenburger, D.A., and Nolan, G.P. (2005).
Causal Protein-Signaling Networks Derived from Multiparameter Single-
Cell Data. Science, 308(5721):523 – 529.

Shah, R.D. and Peters, J. (2020). The Hardness of Conditional Independence
Testing and the Generalised Covariance Measure. The Annals of Statis-
tics, 48(3):1514 – 1538.

Su, Z. and Henckel, L. (2022). A Robustness Test for Estimating Total Effects
With Covariate Adjustment. In: Proceedings of the Thirty-Eighth Confer-
ence on Uncertainty in Artificial Intelligence, volume 180 of Proceedings of
Machine Learning Research, pages 1886 – 1895. PMLR.

Textor, J., van der Zander, B., Gilthorpe M.S., Ĺıskiewicz, M., and Ellison
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