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Regularized Transformation Models: The
tramnet Package
by Lucas Kook and Torsten Hothorn

Abstract The tramnet package implements regularized linear transformation models by combining the
flexible class of transformation models from tram with constrained convex optimization implemented
in CVXR. Regularized transformation models unify many existing and novel regularized regression
models under one theoretical and computational framework. Regularization strategies implemented
for transformation models in tramnet include the Lasso, ridge regression, and the elastic net and
follow the parameterization in glmnet. Several functionalities for optimizing the hyperparameters,
including model-based optimization based on the mlrMBO package, are implemented. A multitude
of S3 methods is deployed for visualization, handling, and simulation purposes. This work aims at
illustrating all facets of tramnet in realistic settings and comparing regularized transformation models
with existing implementations of similar models.

Introduction

A plethora of R packages exists to estimate generalized linear regression models via penalized maxi-
mum likelihood, such as penalized (Goeman, 2010) and glmnet (Friedman et al., 2010). Both packages
come with an extension to fit a penalized form of the Cox proportional hazard model. The tramnet
package aims at unifying the above-mentioned and several novel models using the theoretical and
computational framework of transformation models. Novel models in this class include Continuous
Outcome Logistic Regression (COLR), as introduced by Lohse et al. (2017) and Box-Cox type regression
models with a transformed conditionally normal response (Box and Cox, 1964; Hothorn, 2020c).

The disciplined convex optimization package CVXR (Fu et al., 2020) is applied to solve the con-
strained convex optimization problems that arise when fitting regularized transformation models.
Transformation models are introduced in Section Transformation models. For a more theoretical trea-
tise, we refer to Hothorn et al. (2014, 2018); Hothorn (2020b). Convex optimization and domain-specific
languages are briefly discussed in Section Constrained convex optimization, followed by a treatment
of model-based optimization for hyperparameter tuning (Section Model-based optimization).

Transformation models

In stark contrast to penalized generalized linear models, regularized transformation models aim at
estimating the response’s whole conditional distribution instead of focusing on a single moment,
e.g., the conditional mean. This conditional distribution function of a response Y is decomposed
into an a priori chosen absolute continuous and log-concave error distribution F and a conditional
transformation function h(y|x, s) that depends on the measured covariates x and stratum variables
s and is monotone increasing in y. Although the model class is more flexible, packages tram and
tramnet focus on stratified linear transformation models of the form

P (Y ≤ y|X = x, S = s) = F (h(y|s, x)) = F
(

h(y|s)− x⊤β
)

. (1)

Here, the baseline transformation is allowed to vary with stratum variables s, while covariate effects β
are restricted to be shifts common to all baseline transformations h(y|s).

In order for the model to represent a valid cumulative distribution function, F (h(y|s, x)) has to be
monotone increasing in y, and thus, in h for all possible strata s and all possible configurations of the
covariates x. To ensure monotonicity, h is parameterized in terms of a basis expansion using Bernstein
polynomials as implemented in the basefun package (Hothorn, 2020b). Hence, h is of the form

h(y) = aBs,p(y)⊤ϑ,

where aBs,p(y) denotes the vector of basis functions in y of order p and ϑ are the coefficients for each
basis function. Conveniently, aBs,p(y)⊤ϑ is monotone increasing in y as long as

ϑi ≤ ϑi+1, i = 0, . . . , p − 1 (2)
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holds. For the concrete parameterization of stratified linear transformation models, the reader is
referred to Hothorn (2020c).

Many contemporary models can be understood as linear transformation models, such as the
normal linear regression model, logistic regression for binary, ordered, and continuous responses,
as well as exponential, Weibull and Rayleigh regression, and the Cox model in survival analysis.
Thus, by appropriately choosing and parameterizing F and h, one can understand all those models in
the same maximum likelihood-based framework. One can formulate the corresponding likelihood
contributions not only for exact observations but under any form of random censoring and truncation
for continuous and count or ordered categorical responses.

Given a univariate response Y and a set of covariates X = x and strata S = s, one can specify the
following cumulative distribution function and density valid for any linear transformation model:

FY|X=x(y|s, x) = F
(

h(y | s)− x⊤β
)

,

fY|X=x(y|s, x) = F′
(

h(y | s)− x⊤β
)
· h′(y | s).

From here, the log-likelihood contributions for exact, right, left, and interval-censored responses can
be derived as

ℓ(ϑ, β; yi, si, xi) =



log
(

F′
(

h (yi | si)− x⊤i β
))

+ log (h′(yi | si)) yi exact

log
(

F
(

h(ȳ | si)− x⊤i β
))

yi ∈ (−∞, ȳ] left

log
(

1 − F
(

h(
¯
y | si)− x⊤i β

))
yi ∈ (

¯
y, ∞) right

log
(

F
(

h(ȳ | si)− x⊤i β
)
− F

(
h(

¯
y | si)− x⊤i β

))
yi ∈ (

¯
y, ȳ] interval.

The joint log-likelihood of several observations {(yi, xi, si)}n
i=1 is obtained by summing over the

individual log-likelihood contributions ℓi under the assumption that the individual samples are
independent and identically distributed, the case exclusively dealt with by tramnet.

Regularization

The aim of tramnet is to enable the estimation of regularized stratified linear transformation models.
This is achieved by optimizing a penalized form of the log-likelihood introduced in the last section.
The penalized log-likelihood,

ℓ̃(ϑ, β, λ, α; y, s, x) = ℓ(ϑ, β; y, s, x)− λ

(
α ∥β∥1 +

1
2
(1 − α) ∥β∥2

2

)
,

consists of the unpenalized log-likelihood and an additional penalty term. Note that only the shift
parameters β are penalized, whereas the coefficients for the baseline transformation ϑ remain unpe-
nalized. The parameterization of the penalty is chosen to be the same as in glmnet, consisting of a
global penalization parameter λ, and a mixing parameter α controlling the amount of L1 compared to
L2 penalization.

The two penalties and any combination thereof have unique properties and may be useful under
different circumstances. A pure L1 penalty was first introduced by Tibshirani (1996) in an OLS
framework and was dubbed the Lasso (Least Absolute Shrinkage and Selection Operator) due to its
property of shrinking regression coefficients exactly to 0 for large enough λ. A pure Lasso penalty can
be obtained in a regularized transformation model by specifying α = 1. Applying an L2 penalty in
an OLS problem was introduced more than five decades earlier by Tikhonov (1943) and later termed
ridge regression (Hoerl and Kennard, 1970). In contrast to Lasso, ridge regression leads to shrunken
regression coefficients but does not perform automatic variable selection. Zou and Hastie (2005) picked
up on both approaches, discussed their advantages, disadvantages, and overall characteristics and
combined them into the elastic net penalty, a convex combination of an L1 and L2 penalty controlled
by the mixing parameter α. Some of these properties will be illustrated for different models and a
real-world data set in Sections Censoring and likelihood forms and Hyperparameter tuning.
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Constrained convex optimization

Special algorithms were developed to optimize regularized objective functions, most prominently
the LARS and LARS-EN algorithm (Efron et al., 2004) and variants thereof for the penalized Cox
model (Goeman, 2010). However, the aim of tramnet is to solve the objective functions arising in
regularized transformation models in a single computational framework. Due to the log-concavity
of all choices for F in this package and h(y|x, s) being monotone increasing in y, the resulting log-
likelihood contributions for any form of censoring and truncation are concave and can thus be solved
by constrained convex optimization.

The fairly recent development of CVXR allows the specification of constrained convex optimization
problems in terms of a domain-specific language, yielding an intuitive and highly flexible framework
for constrained optimization. Because checking the convexity of an arbitrarily complex expression
is extremely hard, CVXR makes use of a library of smaller expressions, called atoms, with known
monotonicity and curvature and tries to decompose the objective at hand using a set of rules from
disciplined convex optimization (DCP, Grant et al., 2006). Thus, a complex expression’s curvature can
be more easily determined.

More formally, convex optimization aims at solving a problem of the form

minimize
ϑ

g(ϑ)

subject to gi(ϑ) ≤ 0, i = 1, . . . , K,
Aϑ = b,

where ϑ ∈ Rp is the parameter vector, g(ϑ) is the objective function to be optimized, gi(ϑ) specify
the inequality constraints, and A ∈ Rn×p and b ∈ Rp parameterize any equality constraints on
ϑ. Importantly, the objective function and all inequality constraint functions are convex (Boyd and
Vandenberghe, 2004).

The likelihood ∑i ℓ(ϑ, β; yi, si, xi) for transformation models of the form (1) are convex for error
distributions with log-concave density because log-convexity of −F′ ensures the existence and unique-
ness of the most likely transformation ĥ and the convexity of −ℓ(h; y, x). Because the penalty term
is convex in β, it can be added to the negative log-likelihood while conserving convexity. However,
monotonicity of h imposes inequality constraints on the parameters of the baseline transformation,
as illustrated in equation (2). The elegance of domain-specific language-based optimizers comes
to play when adding these and potential other inequality or equality constraints to the objective
function, which will be showcased in Section Additional constraints. Thus, the optimization routines
implemented in package CVXR can be applied for computing maximum likelihood estimates of the
parameters of model (1).

Model-based optimization

The predictive capabilities of regularized regression models heavily depend on the hyperparameters α
and λ. Hyperparameter tuning can be addressed by a multitude of methods with varying computa-
tional complexity, advantages, and disadvantages. Naive or random grid search for more than one
tuning parameter are computationally demanding, especially if the objective function is expensive
to evaluate. Model-based optimization circumvents this issue by fitting a surrogate model, usually
a Gaussian process, to the objective function. The objective function is evaluated at an initial, e.g., ,
a random latin hypercube, design, to which the Gaussian process is subsequently fit. The surrogate
model then proposes the next set of hyperparameters at which to evaluate the objective function by
some infill criterion (Horn and Bischl, 2016). Bischl et al. (2017) implement model-based optimization
for multi-objective blackbox functions in the mlrMBO package. The objective function can, in theory,
be vector-valued and the tuning parameter spaces may be categorical. In tramnet, the objective func-
tion is the cross-validated log-likelihood optimized using a Kriging surrogate model with expected
improvement as the infill criterion. Model-based optimization for hyperparameter tuning is illustrated
in Section Prostate cancer data analysis.

Basic usage

The initial step is fitting a potentially stratified transformation model of the form

R> m1 <- tram(y | s ~ 1, ...)

omitting all explanatory variables. This sets up the basis expansion for the transformation function,
whose regression coefficients will not be penalized, as mentioned in Section 2.1.2. Additionally,
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Model Class Censoring Type

Exact Left Right Interval

BoxCox ✓ ✗ ✗ ✗
Colr ✓ ✓ ✓ ✗
Coxph ✓ ✗ ✓ ✗
Lehmann ✓ ✓ ✗ ✗

Table 1: Combinations of possible model classes and censoring types in the tramnet package. Due to
missing optimization rules in CVXR, not every combination of error distribution and censoring type
yield solvable objective functions. This will change with coming updates in the CVXR package.

tramnet() needs a model matrix including the predictors, whose regression coefficients ought to
be penalized. For numerical reasons, it is useful to provide a scaled model matrix instead of the
original data, such that every parameter is equally affected by the regularization. Lastly, tramnet()
will need the tuning parameters α ∈ [0, 1] and λ ∈ R+, with α representing a mixing parameter and λ
controlling the extent of regularization. Setting λ = 0 will result in an unpenalized model, regardless
of the value of α.

R> x <- model.matrix(~ 0 + x, ...)
R> x_scaled <- scale(x)
R> mt <- tramnet(model = m1, x = x_scaled, lambda, alpha, ...)

S3 methods accompanying the "tramnet" class will be discussed in Section S3 Methods.

Censoring and likelihood forms

Specific combinations of F and the form of censoring yield log-log-concave log-likelihoods. Under
these circumstances, tramnet is not yet able to solve the resulting optimization problem. Table 1
indicates which model class can be fitted under what type of censoring in the current version of
tramnet.

Prostate cancer data analysis

The regularized normal linear and extensions to transformed normal regression models will be
illustrated using the Prostate data set (Stamey et al., 1989), which was used by Zou and Hastie (2005)
to highlight properties of the elastic net.

R> data("Prostate", package = "lasso2")
R> Prostate$psa <- exp(Prostate$lpsa)
R> Prostate[, 1:8] <- scale(Prostate[, 1:8])

The data set contains 97 observations and 9 covariates. In the original paper, the authors chose the
log-transformed prostate specific antigen concentration (lpsa) as the response and used the eight
remaining predictors log cancer volume (lcavol), log prostate weight (lweight), age of the patient
(age), log benign prostatic hyperplasia amount (lbph), seminal vesicle invasion (svi coded as 1 for yes,
0 for no), log capsular penetration (lcp), Gleason score (gleason), and percentage Gleason score 4 or 5
(pgg45) as covariates.

Linear and Box-Cox type regression models

Zou and Hastie (2005) imposed an assumption on the conditional distribution of the response by
log-transforming and fitting a linear model. In the following, it is shown that the impact of this
assumption may be assessed by estimating the baseline transformation from the data, followed by
a comparison with the log-transformation applied by Zou and Hastie (2005). The linear models in
lpsa and log(psa) are compared to transformation models with basis expansions in both log(psa) and
psa, while specifying conditional normality of the transformed response. Additionally, the models
are compared to an alternative implementation of regularized normal linear regression in penalized.
Five different models will be used to illustrate important facets of transformation models, including
parameterization and interpretation. The models are summarized in Table 2 and will be elaborated
on throughout this section. The comparison is based on unpenalized models first. Later, the section
highlights the penalized models together with hyperparameter tuning.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 585

Name Code Model for FY|X=x(y|x)

mp penalized(response = lpsa, penalized = x) Φ
(
ϑ1 + ϑ2 log(y)− x⊤β

)
mt Lm(lpsa ∼ .) Φ

(
ϑ1 + ϑ2 log(y)− x⊤β

)
mtp BoxCox(psa ∼ ., log_first = TRUE, order = 1) Φ

(
aBs,1(log(y))⊤ϑ − x⊤β

)
mt1 BoxCox(psa ∼ ., log_first = TRUE, order = 7) Φ

(
aBs,7(log(y))⊤ϑ − x⊤β

)
mt2 BoxCox(psa ∼ ., log_first = FALSE, order = 11) Φ

(
aBs,11(y)⊤ϑ − x⊤β

)
Table 2: Summary of the five models illustrated in Section Prostate cancer data analysis, including their
name throughout the manuscript, the R code to fit them, and the mathematical formulation of their
conditional cumulative distribution function. For comparison, mp is included as an ordinary linear
model, which is equivalent to model mt in terms of log-likelihood, but differs in the parameterization
of the transformation function h and thus yields scaled coefficient estimates (cf. Table 3). Model mtp is
a linear model parameterized in terms of a Bernstein basis of maximum order 1. This will yield the
same coefficient estimates as mt, but a log-likelihood that is comparable to models mt1 and mt2, whose
transformation functions are parameterized in terms of higher-order Bernstein bases. The log_first
argument specifies whether the basis expansion is calculated on the log-transformed or untransformed
response.

R> fm_Pr <- psa ~ lcavol + lweight + age + lbph + svi + lcp + gleason + pgg45
R> fm_Pr1 <- update(fm_Pr, ~ 0 + .)
R> x <- model.matrix(fm_Pr1, data = Prostate)

The normal linear regression model is implemented in tram’s Lm() function. Lm()’s parameterization
differs from the usual linear model, hence caution has to be taken when interpreting the resulting
regression coefficients β. In order to compare the results to an equivalent, already existing implemen-
tation, the same model is fitted using penalized.

R> m0 <- Lm(lpsa ~ 1, data = Prostate)
R> mt <- tramnet(m0, x = x, alpha = 0, lambda = 0)
R> mp <- penalized(response = Prostate$lpsa, penalized = x,
+ lambda1 = 0, lambda2 = 0)

A linear model of the form

Y = α̃ + x⊤ β̃ + ε, ε ∼ N(0, σ2)

can be understood as a transformation model through reparameterization as

P(Y ≤ y|X = x) = Φ
(

ϑ1 + ϑ2y − x⊤β
)

.

Here, ϑ1 = −α̃/σ is a reparameterized intercept term, ϑ2 = 1/σ is the slope of the baseline trans-
formation, and the regression coefficients β = β̃/σ represent scaled shift terms, influencing only
the intercept. To recover the usual parameterization, tramnet::coef.Lm() offers the as.lm = TRUE
argument.

R> cfx_tramnet <- coef(mt, as.lm = TRUE)

The transformation function for the linear model is depicted in Figure 1 (pink line). Because a linear
baseline transformation imposes restrictive assumptions on the response’s conditional distribution, it
is advantageous to replace the linear baseline transformation by a more flexible one. In the case of the
Box-Cox type regression model, the linear baseline transformation h(y) = ϑ1 + ϑ2 log y is replaced by
the basis expansion h(y) = aBs,7(log y)⊤ϑ.

R> ord <- 7 # flexible baseline transformation
R> m01 <- BoxCox(psa ~ 1, data = Prostate, order = ord,
+ extrapolate = TRUE, log_first = TRUE)
R> mt1 <- tramnet(m01, x = x, alpha = 0, lambda = 0)

The Box-Cox type regression model is then estimated with the BoxCox() function while specifying the
appropriate maximum order of the Bernstein polynomial. Because the more flexible transformation
slightly deviates from being linear, the normal linear model yields a smaller log-likelihood (cf. Table 3).
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To make sure that this improvement is not due to the increased number of parameters and hence
overfitting, the models’ predictive capacities could be compared via cross-validation.

These results hold for the pre-specified log transformation of the response and a basis expansion
thereof. Instead of prespecifying the log-transformation, its “logarithmic nature” can be estimated
from the data. Afterward, one can compare the deviation from a log-linear baseline transformation
graphically and by inspecting the predictive performance of the model in terms of out-of-sample
log-likelihood.

R> m02 <- BoxCox(psa ~ 1, order = 11, data = Prostate, extrapolate = TRUE)
R> mt2 <- tramnet(m02, x = x, lambda = 0, alpha = 0)

Indeed, the baseline transformation in Figure 1 is similar to the basis expansion in the log-transformed
response upon visual inspection. Because mt is estimated using the log-transformed response and mt1
and mt2 are based on the original scale of the response, the resulting model log-likelihoods are not
comparable. To overcome this issue, one can fit a Box-Cox type model with maximum order 1, as this
results in a linear but alternatively parameterized baseline transformation.

R> m0p <- BoxCox(psa ~ 1, order = 1, data = Prostate, log_first = TRUE)
R> mtp <- tramnet(m0p, x = x, lambda = 0, alpha = 0)

Figure 1 plots the three distinct baseline transformations resulting from models mt, mt1, and mt2. The
initial assumption to model the prostate-specific antigen concentration linearly on the log-scale seems
to be valid when comparing the three transformation functions. The linear transformation in lpsa
used in mt, and the basis expansion in log(psa) (mt1) are almost indistinguishable and yield very
similar coefficient estimates, as well as log-likelihoods (cf. Table 3, mtp vs. mt1). The basis expansion
in psa (mt2) is expected to be less stable due to the highly skewed untransformed response. This is
reflected in Figure 1, where the baseline transformation deviates from being linear towards the bounds
of the response’s support. However, the log-linear behavior of h was clearly captured by this model
and further supported the initial assumption of conditional log-normality of the response. For the
same reasons, the resulting log-likelihood of mt2 is smaller than for mt1 (Table 3). Taken together, this
exemplary analysis highlights the flexibility and usefulness of transformation models to judge crucial
modeling assumptions.

log(psa)

h
(y

)

−6

−4

−2

0

2

0 1 2 3 4 5

mt
mt1
mt2

Figure 1: Comparison of different choices for the baseline transformation of the response (prostate-
specific antigen concentration) in the Prostate data. The original analysis prespecified a log-
transformation of the response and then assumed conditional normality on this scale. Hence the
baseline transformation of mt is of the form: h(lpsa) = ϑ1 + ϑ2 · lpsa. Now, one can allow a more
flexible transformation function in log(psa) to judge any deviations of h(log(psa)) from linearity,
leading to a baseline transformation in terms of basis functions: aBs,7(log(psa))⊤ϑ in mt1. Lastly,
instead of presuming a log-transformation, one could estimate the baseline transformation from the
raw response (psa), i.e., h(psa) = aBs,11(psa)⊤ϑ in mt2. In this case, a higher-order basis expansion was
chosen to account for the skewness of the raw response. Notably, all three baseline transformations are
fairly comparable. The basis expansion in psa deviates from being log-linear towards the boundaries
of the response’s support, as there are only a few observations.
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Model Coefficient estimates logLik

lcavol lweight age lbph svi lcp gleason pgg45

mp 0.69 0.23 -0.15 0.16 0.32 -0.15 0.03 0.13 -99.5
mt 1.03 0.33 -0.22 0.23 0.47 -0.22 0.05 0.19 -99.5
mtp 1.03 0.33 -0.22 0.23 0.47 -0.22 0.05 0.19 -339.9
mt1 1.03 0.34 -0.21 0.22 0.48 -0.23 0.04 0.22 -338.0
mt2 0.97 0.32 -0.19 0.22 0.48 -0.21 0.07 0.21 -343.5

Table 3: Comparison of the three transformation models on the Prostate data. Coefficient estimates
are shown for each model, together with the in-sample log-likelihood in the last column. The first
three models, mp, mt, and mtp use a linear baseline transformation in lpsa and log(psa), respectively.
The mp model was fit using penalized and gave the scaled version of the regression coefficients in
mt, but the same log-likelihood. At the same time, mt and mtp differ only in their response variable
and its subsequent log-transformation in mtp, yielding the same coefficient estimates but a different
log-likelihood. Models mt1 and mt2 allow a flexible basis expansion in log(psa) and psa, respectively.
Model mt1, allowing for a flexible basis expansion in lpsa, fits the data the best. However, the resulting
coefficient estimates are similar for all models.

Hyperparameter tuning

This section features cross-validation, model-based optimization, and profiling functions for hyperpa-
rameter tuning, whose appropriate values are highly problem-dependent and hard to know in advance.
tramnet implements naive grid search and model-based optimization in the functions cvl_tramnet()
and tramnet_mbo(), respectively. In the framework of regularized transformation models, it is very
natural to choose the out-of-sample log-likelihood as the objective function because the notion of a
mean square loss does not make sense for survival, let alone censored outcomes. The out-of-sample
log-likelihood is, in fact, the log score, which is a proper scoring rule (Gneiting and Raftery, 2007).

R> m0 <- BoxCox(lpsa ~ 1, data = Prostate, order = 7, extrapolate = TRUE)
R> mt <- tramnet(m01, x = x, alpha = 1, lambda = 0)

tramnet offers cross-validation in cvl_tramnet(), comparable to the optL1(), and optL2() functions
in penalized, which takes a sequence of values for λ and α and performs a simple – and arguably
slow – grid search. Per default, it computes 2-fold cross-validation. The user is encouraged, however,
to judge the resulting bias-variance trade-off accordingly.

R> lambdas <- c(0, 10^seq(-4, log10(15), length.out = 4))
R> cvlt <- cvl_tramnet(object = mt, fold = 2, lambda = lambdas, alpha = 1)

In order to compare cross-validation across multiple packages and functions, it is also possible to
supply the folds for each row in the design matrix as a numeric vector, as for example returned by
penalized::optL1().

R> pen_cvl <- optL1(response = lpsa, penalized = x, lambda2 = 0, data = Prostate,
+ fold = 2)
R> cvlt <- cvl_tramnet(object = mt, lambda = lambdas, alpha = 1,
+ folds = pen_cvl$fold)

The resulting object is of class "cvl_tramnet" and contains a table for the cross-validated log-likelihoods
for each fold and the sum thereof, the ‘optimal’ tuning parameter constellation, which resulted in the
largest cross-validated log-likelihood, tables for the cross-validated regularization paths, the folds and
lastly the full fit based on the ‘optimal’ tuning parameters. Additionally, the resulting object can be
used to visualize the log-likelihood and coefficient trajectories. These trajectories highly depend on the
chosen folds, and the user is referred to the full profiling functions discussed in Section Regularization
paths.

Model-based optimization

In contrast to naive grid search, model-based optimization comprises more elegant methods for
hyperparameter tuning. tramnet offers the mbo_tramnet() and mbo_recommended() functions. The
former implements Kriging-based hyperparameter tuning for the elastic net, the Lasso, and ridge
regression. mbo_tramnet() takes a "tramnet" object as input and computes the cross-validated log-
likelihood based on the provided fold or folds argument. The initial design is a random latin
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hypercube design with n_design rows per parameter. The number of sequential fits of the surrogate
models is specified through n_iter, and the range of the tuning parameters can be specified by
max/min arguments. The default infill criterion is expected improvement. However, Bischl et al. (2017)
encourage the use of the lower confidence bound over expected improvement, which can be achieved
in mbo_tramnet() by specifying opt_crit = makeMBOInfillCritCB(). 10-fold cross-validation is used
to compute the objective function for the initial design and each iteration. The recommended model is
then extracted using mbo_recommended().

R> tmbo <- mbo_tramnet(mt, obj_type = "elnet", fold = 10)
R> mtmbo <- mbo_recommended(tmbo, m0, x)

Unlike in the previous section, one can directly optimize the tuning parameters in an elastic net
problem instead of optimizing over one hyperparameter at a time or having to specify Lasso or ridge
regression a priori. The output of mbo_tramnet() is quite verbose and can be shortened by using the
helper function print_mbo().

R> print_mbo(tmbo)

## Recommended parameters:
## lmb=1.04e-05; alp=0.751
## Objective: y = 710

Interpreting the output, model-based optimization suggests an unpenalized model with α = 0.75
and λ = 0. This result stresses the advantages of model-based optimization over naive or random
grid search in terms of complexity and computational efficiency. In the end, the proposed model is
unpenalized and thus does not introduce sparsity in the regression coefficients.

R> coef(mtmbo)

## lcavol lweight age lbph svi lcp gleason pgg45
## 1.0312 0.3380 -0.2068 0.2198 0.4801 -0.2329 0.0437 0.2157

R> summary(mtmbo)$sparsity
## [1] "8 regression coefficients, 8 of which are non-zero"

Regularization paths

As discussed before, it may be useful to inspect the full regularization paths over the tuning param-
eters λ and α. Akin to the functions profL1() and profL2() in package penalized, tramnet offers
prof_lambda() and prof_alpha(). Since these functions take a fitted model of class "tramnet" as
input, which is internally updated, it is crucial to correctly specify the other tuning parameter in the
model fitting step. In the example to come, mt was fit using α = 1 and λ = 0, resulting in a Lasso
penalty only when profiling over λ. The resulting profile is depicted in Figure 2.

R> pfl <- prof_lambda(mt)

prof_lambda() takes min_lambda, max_lambda, and nprof as arguments and internally generates an
equi-spaced sequence from min_lambda to max_lambda on the log scale of length nprof. By default,
this sequence ranges from 0 to 15 and is of length 5.

R> plot_path(pfl, plot_logLik = FALSE, las = 1, col = coll)

Additional constraints

In some applications, the specification of additional constraints on the shift parameters β are of interest.
Most commonly, either positivity or negativity for some or all regression coefficients is aimed at.
In tramnet, additional inequality constraints can be specified via the constraints argument, which
are internally handled as constraints[[1]] %*% beta > constraints[[2]]. Hence, to specify the
constraint of strictly positive regression coefficients, one would supply an identity matrix of dimension
p for the left-hand side and the zero p-vector for the right-hand side, as done in the following example.

R> m0 <- BoxCox(lpsa ~ 1, data = Prostate, extrapolate = TRUE)
R> mt <- tramnet(m0, x, alpha = 0, lambda = 0, constraints = list(diag(8),
+ rep(0, 8)))
R> coef(mt)
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Figure 2: Full regularization paths for the tuning parameter λ using the default values of plot_path().

## lcavol lweight lbph svi gleason pgg45
## 0.9111 0.2996 0.1684 0.3969 0.0133 0.1125

The coefficients with a negative sign in the model without additional positivity constraints now shrink
to zero, with the other coefficient estimates changing as well.

R> summary(mt)$sparsity

## [1] "8 regression coefficients, 6 of which are non-zero"

One can compare this model to the implementation in tram, where it is also possible to specify linear
inequality constraints on the regression coefficients β. Here, it is sufficient to specify constraints =
c("age >= 0","lcp >= 0") for the two non-positive coefficient estimates.

R> m <- BoxCox(lpsa ~ . - psa, data = Prostate, extrapolate = TRUE,
+ constraints = c("age >= 0", "lcp >= 0"))
R> max(abs(coef(m) - coef(mt, tol = 0)))

## [1] 1.28e-05

Indeed, both optimizers arrive at virtually the same coefficient estimates.

S3 Methods

Building on the S3 infrastructure of the packages mlt and tram, this package provides correspond-
ing methods for the following generics: coef(), logLik(), plot(), predict(), simulate(), and
residuals(). The methods’ additional "tramnet"-specific arguments will be briefly discussed in
this section.

coef.tramnet() suppresses the baseline transformation’s coefficient estimates ϑ̂ by default and
considers shift parameter estimates β̂ below 10−6 as 0 to stress the selected variables only. This
threshold can be controlled by the tol argument. Hence, coef(mt,with_baseline = TRUE,tol = 0)
returns all coefficients.

R> coef(mtmbo, with_baseline = TRUE, tol = 0)

## Bs1(lpsa) Bs2(lpsa) Bs3(lpsa) Bs4(lpsa) Bs5(lpsa) Bs6(lpsa) Bs7(lpsa)
## -1.9775 -1.5055 -1.0335 -0.2778 -0.2778 1.0723 1.5150
## Bs8(lpsa) lcavol lweight age lbph svi lcp
## 1.9576 1.0312 0.3380 -0.2068 0.2198 0.4801 -0.2329
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## gleason pgg45
## 0.0437 0.2157

The logLik.tramnet() method allows the log-likelihoods re-computation under new data (i.e., out-of-
sample) and different coefficients (parm) and weights (w), as illustrated below.

R> logLik(mtmbo)

## 'log Lik.' -97.7 (df=NA)

R> cfx <- coef(mtmbo, with_baseline = TRUE, tol = 0)
R> cfx[5:8] <- 0.5
R> logLik(mtmbo, parm = cfx)

## 'log Lik.' -561 (df=NA)

R> logLik(mtmbo, newdata = Prostate[1:10,])

## 'log Lik.' -14.3 (df=NA)

R> logLik(mtmbo, w = runif(n = nrow(mtmbo$x)))

## 'log Lik.' -41.8 (df=NA)

In the spirit of mlt’s plotting methods for classes "mlt" and "ctm", plot.tramnet() offers diverse
plotting options for objects of class "tramnet". The specification of new data and the type of plot is
illustrated in the following code chunk and Figure 3.

R> par(mfrow = c(3, 2)); K <- 1e3
R> plot(mtmbo, type = "distribution", K = K, main = "A") # A, default
R> plot(mtmbo, type = "survivor", K = K, main = "B") # B
R> plot(mtmbo, type = "trafo", K = K, main = "C") # C
R> plot(mtmbo, type = "density", K = K, main = "D") # D
R> plot(mtmbo, type = "hazard", K = K, main = "E") # E
R> plot(mtmbo, type = "trafo", newdata = Prostate[1, ], col = 1, K = K, main = "F") # F

The predict.tramnet() method works in the same way as predict.mlt() and as such supports
the types trafo,distribution,survivor,density,logdensity,hazard,loghazard,cumhazard, and
quantile. For type = "quantile", the corresponding probabilities (prob) have to be supplied as an
argument to evaluate the quantile function.

R> predict(mtmbo, type = "quantile", prob = 0.2, newdata = Prostate[1:5,])

## prob [,1] [,2] [,3] [,4] [,5]
## 0.2 3.4 3.55 3.74 3.72 2.68

Another method offered by this package implements parametric bootstrap-based sampling. In particu-
lar, simulate.tramnet() calls the simulate.ctm() function after converting the "tramnet" object to a
"ctm" object.

R> simulate(mtmbo, nsim = 1, newdata = Prostate[1:5,], seed = 1)

## [1] 3.56 3.97 4.57 5.48 2.69

Lastly, residuals.tramnet() computes the generalized residual r defined as the score contribution
for sample i with respect to a newly introduced intercept parameter γ, which is restricted to be zero.
In particular,

r =
∂ℓ (ϑ, β, γ; y, s, x)

∂γ

∣∣∣∣
γ=0

yields the generalized residual with respect to γ for the model

FY(y|s, x) = F
(

h(y | s)− x⊤β − γ
)

.
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Figure 3: Illustration of plot.tramnet()’s versatility in visualizing the response’s estimated condi-
tional distribution on various scales, including cdf, survivor, transformation scale and pdf. Note that,
by default, the plot is produced for each row in the design matrix. In unstratified linear transformation
models, this leads to shifted versions of the same curve on the transformation function’s scale. A:
Estimated conditional distribution function for every observation. B: Estimated conditional survivor
function for every observation. The conditional survivor function is defined as S(y|x) = 1 − FY(y|x).
C: Conditional most likely transformation for every observation. Note that every conditional transfor-
mation function is a shifted version of the same curve. D: The conditional density for every observation
can be calculated using fY(y|x) = F′(a(y)⊤ϑ − x⊤β)a′(y)⊤ϑ. E: A distribution function is fully char-
acterized by its hazard function λ(y|x) = fY(y|x)/S(y|x), which is depicted in this panel. F: The
newdata argument can be used to plot the predicted most likely transformation for the provided data,
in this case, the first row of the Prostate data.

R> residuals(mtmbo)[1:5]

## [1] -6.50 -6.36 -6.60 -6.57 -4.17
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In residual analysis and boosting, it is common practice to check for associations between residuals
and covariates that are not included in the model. In the prostate cancer example, one could investigate
whether the variables age and lcp should be included in the model. To illustrate this particular case,
a nonparametric independence_test() from package coin can be used (Hothorn et al., 2008). First,
the uncoditional transformation model m0 is fitted. Afterward, the tramnet models excluding age and
lcp are estimated, and their residuals extracted using the residuals.tramnet() method. Lastly, an
independence test using a maximum statistic (teststat = "max") and a Monte Carlo-based approxi-
mation of the null distribution based on resampling 106 times (distribution = approximate(1e6))
yields the results printed below.

R> library("coin")
R> m0 <- BoxCox(lpsa ~ 1, data = Prostate, extrapolate = TRUE)
R> x_no_age_lcp <- x[, !colnames(x) %in% c("age", "lcp")]
R> mt_no_age_lcp <- tramnet(m0, x_no_age_lcp, alpha = 0, lambda = 0)
R> r <- residuals(mt_no_age_lcp)
R> it <- independence_test(r ~ age + lcp, data = Prostate,
+ teststat = "max", distribution = approximate(1e6))
R> pvalue(it, "single-step")

## age 0.023748
## lcp <0.000001

Because there is substantial evidence against the independence of the models’ residuals to either lcp or
age, we can conclude that it is worthwhile to include age and lcp in the model. Packages trtf (Hothorn,
2019b) and tbm (Hothorn, 2020a, 2019a) make use of this definition of a residual for estimating and
boosting transformation models, trees, and random forests. For more theoretical insight, the reader is
referred to the above mentioned publications.
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