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a b s t r a c t 

Outcomes with a natural order commonly occur in prediction problems and often the available input 

data are a mixture of complex data like images and tabular predictors. Deep Learning (DL) models are 

state-of-the-art for image classification tasks but frequently treat ordinal outcomes as unordered and lack 

interpretability. In contrast, classical ordinal regression models consider the outcome’s order and yield 

interpretable predictor effects but are limited to tabular data. We present ordinal neural network trans- 

formation models ( ontram s), which unite DL with classical ordinal regression approaches. ontram s are 

a special case of transformation models and trade off flexibility and interpretability by additively decom- 

posing the transformation function into terms for image and tabular data using jointly trained neural 

networks. The performance of the most flexible ontram is by definition equivalent to a standard multi- 

class DL model trained with cross-entropy while being faster in training when facing ordinal outcomes. 

Lastly, we discuss how to interpret model components for both tabular and image data on two publicly 

available datasets. 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

Many classification problems deal with classes that show a nat- 

ral order. This includes for example patient outcome scores in 

linical studies or movie ratings [1] . These ordinal outcome vari- 

bles may not only depend on interpretable tabular predictors like 

ge or temperature but also on complex input data such as medi- 

al images, textual descriptions, or spectra. Depending on the com- 

lexity of the input data and the concrete task, different analysis 

pproaches have been established to tackle the ordinal problems. 

Ordinal regression as a probabilistic approach has been studied 

or more than four decades [2] . The goal is to fit an interpretable

egression model, which estimates the conditional distribution of 

n ordinal outcome variable Y based on a set of tabular predictors. 

he ordinal outcome Y can take values in a set of ordered classes 

nd the tabular predictors are scalar and interpretable like age. Or- 

inal regression models provide a valid probability distribution in- 

tead of a single point estimate for the most likely outcome which 

s essential to reflect uncertainty in the predictions. Moreover, the 

stimated model parameters are interpretable as the effect a sin- 
∗ Corresponding author at: Epidemiology, Biostatistics & Prevention Institute, Uni- 
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le predictor has on the outcome given the remaining predictors 

re held constant. This allows experts to assess whether the model 

orresponds to their field knowledge and provides the necessary 

rust for application in critical decision making. However, there 

s a trade-off between interpretability and model complexity. The 

igher the complexity of a model, the harder it becomes to directly 

nterpret the individual model parameters. 

Deep Learning (DL) approaches have gained huge popularity 

ver the last decade and achieved outstanding performance on 

omplex tasks like image classification and natural language pro- 

essing [3] . The models take the raw data as input and learn rel-

vant features during the training procedure by transforming the 

nput into a latent representation, which is suitable to solve the 

roblem at hand. This avoids the challenging task of feature en- 

ineering, which is necessary when working with statistical mod- 

ls. Yet, unlike statistical models, most DL models have a black box 

haracter, which makes it hard to interpret individual model com- 

onents. 

DL models for ordinal models typically do not integrate tabular 

redictors and yield interpretable effect estimates for tabular and 

mage data at the same time. 

This is a major disadvantage for example in fields like medicine 

hich requires multiple data modalities for decision making but 

lso a reliably interpretable model which quantifies the effects of 

he predictors on the outcome [4] . 

https://doi.org/10.1016/j.patcog.2021.108263
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108263&domain=pdf
mailto:sick@zhaw.ch
https://doi.org/10.1016/j.patcog.2021.108263
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.1. Our contribution 

In this work we introduce ordinal neural network transforma- 

ion models ( ontram s), which unite classical ordinal regression 

ith DL approaches while conserving the interpretability of sta- 

istical and flexibility of DL models. We use a theoretically sound 

aximum-likelihood based approach and reparametrize the cat- 

gorical cross-entropy loss to incorporate the order of the out- 

ome. This guarantees the estimation of a valid probability distri- 

ution. By definition, the reparameterized negative log-likelihood 

NLL) loss is able to achieve the same prediction performance as 

 standard DL model trained with cross-entropy loss, but allows a 

aster training in case of an ordinal outcome. The main advantage 

f the proposed ontram s is that ontram s provide interpretable ef- 

ect estimates for the different input data, which is not possible 

ith other DL models. 

We view ordinal regression models from a transformation 

odel perspective [5,6] . This change of perspective is useful be- 

ause it allows a holistic view on regression models, which eas- 

ly extends beyond the case of ordinal outcomes. In transfor- 

ation models the problem of estimating a conditional out- 

ome distribution is translated into a problem of estimating the 

arameters of a monotonically increasing transformation func- 

ion, which transforms the potentially complex outcome distri- 

ution to a simple, predefined distribution F Z of a continuous 

ariable. 

The goal of ontram s is to estimate a flexible outcome distri- 

ution based on a set of predictors including images and tabular 

ata while keeping components of the model interpretable. on- 

ram s are able to seamlessly integrate both types of data with 

aryingly complex interactions between the two, by taking a mod- 

lar approach to model building. The data analyst can choose the 

cale on which to interpret image and tabular predictor effects, 

uch as the odds or hazard scale, by specifying the simple dis- 

ribution function F Z . In addition, the data analyst has full control 

ver the complexity of the individual model components. The dis- 

ussed ontram s will contain at most three (deep) neural networks 

or the intercepts in the transformation function, the tabular and 

he image data. Together with the simple distribution function F Z 
he output of these neural networks will be used to evaluate the 

LL loss. In the end, the NNs, which control the components of 

he model, are jointly fitted by standard deep learning algorithms 

ased on stochastic gradient descent. In this work, we feature con- 

olutional neural networks (CNNs) for complex input data like 

mages. However, the high modularity of ontram s enables many 

ore applications such as recurrent neural networks for text-based 

odels. 

.2. Organization of this paper 

We first give some theoretical background on multi-class clas- 

ification and ordinal regression. Afterwards, related work is de- 

cribed in Section 2.3 to highlight the contributions of ontram s 

o the field. We then provide details about ontram s in Section 3 .

ubsequently, we describe the data sets, experiments, and mod- 

ls we use to study and benchmark ontram s ( Section 4 ). We end

his paper with a discussion of our results and juxtaposition of the 

ifferent approaches in light of model complexity, interpretabil- 

ty, and predictive performance. We present further results in Ap- 

endix C and complement our discussion of different loss func- 

ions and evaluation metrics in Appendices E and F, respectively. 

ecause most state-of-the-art approaches to ordinal outcomes are 

lassifiers, we particularly highlight the distinction between ordi- 

al classification and the proposed regression approach of ontram s 

n Appendix G. 
2 
. Background 

.1. Multi-class classification 

In DL approaches ordinal outcomes are frequently modeled in 

he same way as unordered outcomes using multi-class classifi- 

ation (MCC). That is, softmax is used as the last-layer activation 

nd the loss function is the categorical cross-entropy. The cross- 

ntropy corresponds to the negative log-likelihood and solely the 

robability assigned to the observed class is entering the loss as 

 i (h ; y ki , x i ) = P (Y = y ki ) , which ignores the outcome’s natural or-

er (see also Appendix A). 

.2. Ordinal regression models 

Ordinal regression aims to characterize the whole conditional 

istribution of an ordinal outcome variable given its predictors. 

onsider an ordered outcome variable Y with K possible values 

 1 < y 2 < . . . < y K . The distribution of Y is fully determined by

ts probability density function (PDF). However, unlike unordered 

utcomes an ordered outcome possesses a well defined cumula- 

ive distribution function (CDF) F Y (y k ) := P (Y ≤ y k ) , which natu-

ally contains the order. The likelihood contribution for an observa- 

ion (y ki , x i ) is given by the predicted probability for the observed 

lass, which can be written as 

 i = P (Y = y ki | x i ) = P (Y ≤ y ki | x i ) − P (Y ≤ y (k −1) i | x i ) , (1) 

or k = 1 , . . . , K and P (Y ≤ y 0 ) := 0 , P (Y ≤ y K ) = 1 . Parametrizing

he likelihood contributions using the CDF directly enables to in- 

orporate the order of the outcome when formulating regression 

odels for ordinal data ( Section 3 ). It is worth noting that the 

oss is equivalent to the cross-entropy and merely uses a different 

arametrization to take the outcome’s natural order into account. 

Many ordinal regression models assume the existence of an un- 

erlying continuous latent variable (an unobserved quantity) Z. The 

rdinal outcome variable Y is understood as a categorized ver- 

ion of Z resulting from incomplete knowledge; we only know the 

lasses in terms of the intervals in which Z lies. Fitting an ordi- 

al regression model based on the latent variable approach aims at 

nding cut points h (y k | x ) at which Z is separated into the assumed

lasses (see Fig. 1 B). Even if Z can not be interpreted directly, us- 

ng a latent variable approach has advantages, because the chosen 

istribution of Z determines the interpretability of the terms in the 

ransformation function (see Section 2.2.1 ). 

Moreover, the latent variable approach enables to understand 

rdinal regression as a special case of parametric transformation 

odels, which were recently developed in statistics [5] and are 

pplicable to a wide range of outcomes with natural extensions 

o classical machine learning techniques such as random forests 

nd boosting. Transformation models are able to model highly 

exible outcome distributions while simultaneously keeping spe- 

ific model components interpretable. In transformation models 

he conditional outcome distribution of (Y | x ) is modeled by trans- 

orming the outcome variable (Y | x ) to a variable (Z| x ) with known 

simple) CDF F Z , like the Gaussian or logistic distribution. Transfor- 

ation models in general are thus defined by 

 Y (y | x ) = F Z (h (y | x )) , (2) 

nd all models in our proposed framework of ontram s are of this 

orm. 

The goal is then to fit a monotonically increasing transforma- 

ion function h , which maps the observed outcome classes (y k | x ) 
o the conditional cut points 

 (y k | x ) , k = 1 , . . . , K − 1 , (3) 

f the latent variable Z, as illustrated in Fig. 1 . In the example 

n Fig. 1 the outcome can take five classes and the K − 1 cut 
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Fig. 1. Transformation model likelihoods for a model with ordinal outcome. Panel 

C shows the conditional density of Y given x , which gets mapped onto the den- 

sity of the latent variable Z (A) via the transformation function h (B). The likeli- 

hood contributions are in fact probabilities and given by the area under the density 

of Z between two consecutive cut points in the transformation function. Note that 

h (y 5 | x ) = + ∞ does not show on the plot for the transformation function, but is ev- 

ident from the yellow (upper) area under the density of Z. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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Table 1 

Interpretational scales of shift terms induced by F Z [7] . Most link functions 

have been studied in the context of proportional odds model neural net- 

works and a classification loss [8] . More details concerning the interpreta- 

tional scales are given in Appendix D. 

F Z F −1 
Z 

Symbol Interpretation of shift terms 

Logistic logit F L log odds-ratio 

Gompertz cloglog F MEV log hazard-ratio 

Gumbel loglog F Gumbel log hazard-ratio for Y r = K + 1 − Y 

Normal probit � not interpretable directly 
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oints h (y 1 | x ) , h (y 2 | x ) , h (y 3 | x ) , and h (y 4 | x ) have to be estimated.

he first class of Y on the scale of Z is given by the interval

−∞ , h (y 1 | x )] , the fifth class as (h (y 4 | x ) , + ∞ ) , so often the con-

entions h (y 0 | x ) = −∞ and h (y K | x ) = + ∞ are used. The likelihood

ontribution of a given observation (y ki , x i ) can now be derived 

rom the CDF of Z instead of Y and is given by 

 i (h ; y ki , x i ) = P (Y = y ki | x i ) = F Y (y ki | x i ) − F Y (y (k −1) i | x i ) 
= F Z (h (y ki | x i )) − F Z (h (y (k −1) i | x i )) . (4) 

he single likelihood contributions are the heights of the steps in 

he CDF or equivalently the area under the density of the latent 

ariable Z between two consecutive cut points ( cf. Fig. 1 B, C). Note 

hat two consecutive cut points enter the likelihood, such that the 

atural order of the outcome is used to parametrize the likelihood, 

lthough the likelihood contribution is given by the probability of 

he observed class alone. Consequently, minimizing the negative 

og-likelihood 

� (h ; y 1: n , x 1: n ) = −
n ∑ 

i =1 

log L i (h ; y ki , x i ) (5) 

stimates the conditional outcome distribution of (Y | x ) by esti- 

ating the unknown parameters of the transformation function. 

ote that in principle this formulation allows us to directly in- 

orporate uncertain observations, for instance, an observation may 

ie somewhere in [ y k , y k +2 ] , k ≤ K − 2 if a rater is uncertain about

he quality of a wine or a patient rates their pain in between two 

lasses. 

.2.1. Interpretability in proportional odds models 

Interpretability of a transformation model depends on the 

hoice of the distribution F Z of the latent variable Z and the 

ransformation function h . A summary of common interpretational 

cales is given in Table 1 . 

Here, we demonstrate interpretability through the example of 

 proportional odds model, which is well known in statistics [7] . 

or the distribution of Z we choose the standard logistic distribu- 

ion (denoted by F L ), whose CDF is given by F Z (z) = F L (z) := (1 +
xp (−z)) −1 . The transformation function h is parametrized as 

 (y k | x ) = ϑ k −
J ∑ 

j=1 

β j x j = ϑ k − x � β, j = 1 , . . . , J. (6) 
3 
 transformation model with such a transformation function is 

alled linear shift model, since a change �x j in a single predictor 

 j causes a linear shift of size β j �x j in the transformation func- 

ion. 

The popularity of the transformation model with F Z = F L is due 

o the insightful interpretation of the parameter β j as a log odds- 

atio 

og OR x → x ′ = log 

(
odds (Y > y k | x ′ ) 
odds (Y > y k | x ) 

)
= β j , (7) 

here odds (Y > y k | x ) := P (Y > y k | x ) / P (Y ≤ y k | x ) . This is depicted

n Fig. 2 for a positive valued β , where the effect of increasing x by

ne unit increases the odds for the outcome to belong to a higher 

lass. Specifically, the odds of the outcome being in a higher class 

han y k is increased by a factor of exp (β j ) , which holds for each y k .

owever, the resulting conditional distribution changes in a more 

omplex way ( Fig. 2 A). Because the effect of β is the same for 

ach class boundary these models are referred to as proportional 

dds models [7] . This corresponds to the shape of the transforma- 

ion function h being fixed. A more detailed derivation is given in 

ppendix D. 

.3. Related work 

We summarize related work in the field of deep ordinal regres- 

ion and classification and interpretable machine learning. 

Prediction models for ordinal outcomes have been studied in 

achine learning as extensions of different popular methods like 

aussian Processes [9] , support vector machines [10] , and neu- 

al networks [11] . With the advent of deep learning, various ap- 

roaches have been proposed to tackle classification and regression 

asks with ordinal outcomes, which we describe in more detail in 

he following. Note that we refer to models, which aim to predict a 

alid entire conditional outcome distribution as ordinal regression 

odels, whereas models, which focus on the predicted class label 

ill be referred to as ordinal classification models. 

For instance, the commonly used multi-class classification 

odel with softmax last layer activation (see Section 2.1 ) is a re- 

ression model ( i.e., multinomial regression), whereas most of the 

tate-of-the-art approaches described below are ordinal classifiers. 

n the following we discuss literature on ordinal classification and 

iterature related to different aspects of our work, i.e., ordinal re- 

ression models, transformation models, and interpretability. 

Ordinal classification 

Deep learning approaches to ordinal regression and classifica- 

ion problems range from using an ordinal metric for the eval- 

ation of multi-class classification models to the construction of 

ovel ordinal loss functions and dummy encodings. The earliest 

pproaches made use of the equivalence of an ordinal predic- 

ion problem with outcome Y ∈ { y 1 < . . . < y K } , to the K − 1 binary

lassification problems given by 1 (Y ≤ y k ) , k = 1 , . . . , K [12] , which

s still being used in applications such as age estimation [13] . 

Cheng et al. [14] devised a cumulative dummy encoding for the 

rdinal response where for Y = y we have y = 1 if i ≤ k and 0
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Fig. 2. The conditional probability density, transformation function and latent representation of the ordinal outcome Y with 5 classes depending on a single predictor x which 

is increased by �x = 1 from 0 to 1. The density of (Y | x ) for x = 0 and x = 1 is shown in A. The simple linear shift model h (y k | x ) = ϑ k − β · x imposes a downward shift of 

the transformation function by β when increasing the predictor from x = 0 to x = 1 (B). The shift in the transformation function translates into a shift in the conditional cut 

points h (y k | x ) under the density of the latent variable Z (C). Shifting the transformation function downwards results in higher probabilities of Y belonging to a higher class. 

(For a colour version of this figure, the reader is referred to the web version of this article.) 
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therwise. Cheng et al. [14] then suggest a sigmoid activation for 

he last layer of dimension K, together with two loss functions (rel- 

tive entropy and a squared error loss). Similar approaches remain 

ighly popular in application. For instance, [15] extend the ap- 

roach to rank-consistent ordinal predictions. The problem of rank 

nconsistency, however, is confined to the K-rank and similar ap- 

roaches and does not appear in ordinal regression models, such 

s the ones we propose. 

Xie and Pun [16] used a similar dummy encoding to train K − 1 

inary classifiers, which share a common CNN trunk for image fea- 

ure extraction but possess their own fully connected part. This 

llows flexible feature extraction while reducing model complex- 

ty substantially due to weight sharing. Weight sharing is a natural 

dvantage of models which are trained with an ordinal loss func- 

ion instead of multiple binary losses, which we describe next. A 

omparison of ontram against the method described in [16] can 

e found in Appendix G. 

Recently, the focus shifted towards novel ordinal loss functions 

nvolving Cohen’s kappa, which was first proposed by de La Torre 

t al. [17] and subsequently used in “proportional odds model 

POM) neural networks” [18] . POM neural networks and their ex- 

ensions to other cumulative link functions in [8] are closely re- 

ated to ontram s, proposed in this paper, because they constitute 

 special case in which the class-specific intercepts do not depend 

n input data (see Section 3 ). The crucial difference between POM 

Ns (as proposed in [18] ) and ontram s is the quadratic weighted 

ohen’s kappa (QWK) loss function in POM NNs, compared to a 

og-likelihood loss in ontram s. Although POM NNs predict a full 

onditional outcome distribution, their focus lies on optimizing a 

lassification metric (QWK). The idea is to penalize misclassifica- 

ions that are further away from the observed class stronger than 

isclassifications that are closer to the observed class. In contrast, 

n regression approaches, the goal is to predict a valid probability 

istribution across all classes. We give more detail on and compare 

ur proposed method against the QWK loss in Appendices E and G, 

espectively. We use QWK-based models as an example to address 

he general problem arising when comparing classification and re- 

ression models, which address different questions and hence op- 

imize distinct target functions. 

Ordinal regression Lastly, [19] took a probabilistic approach us- 

ng Gaussian processes with an ordinal likelihood similar to the cu- 

ulative probit model (cumulative ordinal model with F Z = �) and 

 model formulation similar to POM neural networks. We address 

urther related work concerning technical details in Section 3 , such 

s the explicit formulation of constraints in the loss function. 

Transformation models Deep conditional transformation models 

ave very recently been applied to regression problems with a 
m

4 
ontinuous outcome [6] . Sick et al. [6] parametrized the transfor- 

ation function as a composition of linear and sigmoid transfor- 

ations and a flexible basis expansion that ensures monotonicity 

f the resulting transformation function. The authors applied deep 

ransformation models to a multitude of benchmark data sets with 

 continuous outcome and demonstrated a performance that was 

omparable to or better than other state-of-the-art models. How- 

ver, in one of the benchmark data set the authors treated a truly 

rdinal outcome as continuous, as done by all the other benchmark 

odels. This is indicative for the lack of deep learning models for 

rdered categorical regression. 

Interpretability In general, deep learning models suffer from a 

ack of interpretability of the predictions they make [3] . In DL 

odels related to image data, interpretability is mostly referred to 

s highlighting parts of the image that explain the respective pre- 

iction. Often, surrogate models are build on top of the black-box 

odel’s predictions, which are easier to interpret. One such model 

s LIME [20] . For problems with an ordinal outcome, [21] com- 

ent on the limited interpretability of the ensemble of neural 

etworks in the K-rank approach described above and propose 

o use a mimic learning technique, which combines the ensem- 

le with a more directly interpretable model. In the present work 

e take a different approach to interpretability rooted in statis- 

ical regression models. The interpretability of the effect of indi- 

idual input features is given by the fitted model parameters in 

n additive transformation function, which is a common modelling 

hoice for achieving interpretability [4] . We give more detail in 

ection 2.2.1 and Appendix D. 

. Ordinal neural network transformation models 

Here, we present ordinal neural network transformation mod- 

ls, which unite cumulative ordinal regression models with deep 

eural networks and seamlessly integrate complex data like im- 

ges ( B ) and/or tabular data ( x ). At the heart of an ontram lies

 parametric transformation function h (y k | x , B ) , which transforms 

he ordinal outcome y k to cut points of a continuous latent vari- 

ble and controls the interpretability and flexibility of the model 

see Fig. 1 ). The ordering of the outcome is incorporated in the 

ntram loss function by defining it via the cumulative distribution 

unction 

LL := −1 

n 

n ∑ 

i =1 

log 
(
F Z (h (y ki | x i , B i )) − F Z (h (y (k −1) i | x i , B i )) 

)
. (8) 

n the following we describe the terms of the parametric transfor- 

ation function and their interpretability. The parameters of these 
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Fig. 3. Architecture of ontram s. A: The modular building blocks of the transforma- 

tion function h are controlled by NNs. Simple intercept and linear shift terms are 

modeled using a single-layer neural network. Complex intercept and complex shift 

terms are allowed to depend on the input data in a more complex manner and may 

be a fully connected or convolutional NN depending on the type of the input data. 

The input data D can be images B or tabular predictors x . B: The output of the NNs 

control the additive components of the transformation function h . Together with 

the choice of F Z , h determines the full model, from which the likelihood can be 

evaluated. During training time (solid lines) the weights of all model components 

are trained jointly by minimizing the NLL. After training (dashed lines) the shift 

terms in the transformation function can be interpreted, the conditional outcome 

distribution can be predicted and the NLL can be evaluated for a given test set. 
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erms are controlled by NNs, which are jointly fitted in an end-to- 

nd fashion by minimizing the NLL ( Fig. 3 ). 

Modularity The transformation function h determines the com- 

lexity and interpretability of an ontram . The simplest transforma- 

ion function with only one tabular feature is given by h (y k | x ) =
 k − β · x (see Fig. 2 ). In general a transformation function is mod- 

larly composed of an intercept term, optionally followed by addi- 

ive shift terms, which depend in a more or less complex manner 

n different input data and are controlled by NNs (see Fig. 3 ). 

The intercept term controls the shape of the transformation 

unction: 

1. Simple intercepts (SI) ϑ k , k = 1 , . . . , K − 1 are unconditional, i.e.,

the shape of the transformation function is independent of the 

input data. SIs can be modeled as a single layer neural network 

with K − 1 output units and linear activation function. The in- 

put is given by 1. The outputs are given by γ1 , . . . , γK−1 control- 

ling the intercepts (see Fig. 3 ). 

2. Complex intercepts (CI), on the other hand, depend on the in- 

put data, which may be tabular data, image data or a combina- 

tion of both, yielding ϑ k ( x ) , ϑ k (B ) , or ϑ k ( x , B ) , respectively. CIs

enable more complex transformation functions, whose shape 

may vary with the input. Depending on the type of input data, 

CIs are modeled using a multi-layer fully connected neural net- 

work, a convolutional neural network or a combination of both. 

Analogous to SI terms, the number of output units in the last 

layer is equal to K − 1 with linear activation function, yield- 

ing γ1 ( x , B ) , . . . , γK−1 ( x , B ) depending on the input (see upper
right panel in Fig. 3 ). m

5 
To ensure that the transformation function is non-decreasing, 

he outputs γ1 , . . . , γK−1 of simple and complex intercept models 

re transformed before entering the likelihood via 

 k = ϑ 1 + 

∑ k 
i =2 exp (γi ) , k = 2 , . . . , K − 1 , 

 0 = −∞ , ϑ 1 = γ1 , ϑ K = + ∞ . 
(9) 

The addition of ϑ 0 = −∞ and ϑ K = + ∞ is important for com-

uting the loss as described in Section 2 . Enforcing a monotone 

ncreasing transformation function via Eq. (9) , such that ϑ 0 < ϑ 1 ≤
 . . < ϑ K , has been done similarly in the literature. In what [14] call

hreshold models, γi is squared instead of taking the exponential 

o ensure the intercept function is non-decreasing [8,19] . A differ- 

nt but related approach is to softly penalize the loss for pair-wise 

ank inconsistencies using a hinge loss [22,23] . Note that the spe- 

ial case ϑ k ( x , B ) already includes both tabular and image data.

hat is, the transformation function and therefore the outcome dis- 

ribution is allowed to change with each input x and B , which rep- 

esents the most flexible model possible. In fact, this most flexi- 

le ontram is equivalent to a MCC model with softmax as last- 

ayer activation function and a categorical cross-entropy loss, al- 

eit parametrized differently to take the order of the outcome into 

ccount. 

Shift terms impose data dependent vertical shifts on the trans- 

ormation function (see e.g., Fig. 2 ): 

1. Linear shift (LS) terms x � β are used for tabular features and are 

directly interpretable (see Section 2.2.1 ). The components of the 

parameter β can be modeled as the weights of a single layer 

neural network with input x , one output unit with linear acti- 

vation function and without a bias term (see lower left panel 

in Fig. 3 ). 

2. Complex shift (CS) terms depend on tabular predictors or im- 

age data. Complex shift terms are modeled using flexible dense 

and/or convolutional NNs with input x and/or B , and a sin- 

gle output unit with linear activation (see lower right panel 

in Fig. 3 ). Similar to linear shift terms, the output of β and 

η can be interpreted as the log odds of belonging to a higher 

class, compared to all lower classes, if F Z = F L . Again, this ef- 

fect is common to all class boundaries. In contrast to a linear 

shift term, we can model a complex shift for each tabular pre- 

dictor β(x j ) akin to a generalized additive model. Alternatively, 

we can model a single complex shift β( x ) for all predictors, 

which allows for higher order interactions between the predic- 

tors. This way, the interpretation of an effect of a single predic- 

tor is lost in favour of higher model complexity. 

Interpretability and flexibility In the following, we will present a 

on-exhaustive collection of ontram s integrating both tabular and 

mage data. We start to introduce the least complex model with 

he highest degree of interpretability and end with the most com- 

lex model with the lowest degree of interpretability. 

The simplest ontram conditioning on tabular data x and image 

ata B is given by 

 (y k | x , B ) = ϑ k − x � β − η(B ) , (10) 

here ϑ k is a simple intercept corresponding to class k , β is the 

eight vector of a single layer NN as described above and η(B ) 

he output of a CNN ( Fig. 3 A). In this case, β and η can be in-

erpreted as cumulative log odds-ratios when choosing F Z = F L (see 

ection 2.2.1 ). The above model can be made more flexible, yet less 

nterpretable, by substituting the linear predictor for a more com- 

lex neural network β , such that 

 (y k | x , B ) = ϑ k − β( x ) − η(B ) , (11) 

here β( x ) is now a log odds ratio function that allows for higher 

rder interactions between all predictors in x . For instance, one 

ay be interested in the odds ratio OR B → B ′ of belonging to a 
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2 https://www.github.com/LucasKookUZH/ontram-paper . 
igher category when changing an image B to B 

′ and holding all 

ther variables constant. As a special case, complex shifts include 

n additive model formulation in the spirit of generalized additive 

odels (GAMs) by explicitly parametrizing the effect of each pre- 

ictor x j with a single neural network β j 

 (y k | x , B ) = ϑ k −
J ∑ 

j=1 

β j (x j ) − η(B ) , j = 1 , . . . , J. (12) 

or F Z = F L the complex shift term β j (x ) can be interpreted as a

og-odds ratio for the outcome to belong to a higher class than 

 k compared to the scenario where β j (x ) = 0 , all other predictors

ept constant. 

Another layer of complexity can be added by allowing the in- 

ercept function ϑ k for Y = y k , to depend on the image 

 (y k | x , B ) = ϑ k (B ) − β( x ) . (13) 

n this transformation function we call ϑ k (B ) complex intercept, 

ecause the intercept function is allowed to change with the image 

 Fig. 3 A). One does not necessarily have to stop here. Including 

oth the image and the tabular data in a complex intercept 

 (y k | x , B ) = ϑ k ( x , B ) (14) 

epresents the most flexible model whose likelihood is equiv- 

lent to the one used in MCC models, solely with a different 

arametrization. Consequently, solely the most flexible ontram s 

chieve on-par performance compared with deep classifiers trained 

sing the cross-entropy loss, while the less flexible ontram s are 

ttractive because of their easier interpretability. In fact, we illus- 

rate empirically that a minor trade-off in predictive performance 

eads to a considerable ease in interpretation. 

Computational details The parameters of an ontram are jointly 

rained via stochastic gradient descent. The parameters enter the 

oss function via the outputs of the simple/complex intercept and 

hift terms modeled as neural networks (see Fig. 3 A). The gradient 

f the loss with respect to all trainable parameters is computed 

ia automatic differentiation in the TensorFlow framework. Note 

hat any pre-implemented optimizer can be used and that there 

re no constraints on the architecture of the individual components 

esides their last-layer dimension and activation function. 

. Experiments 

We perform several experiments on data with an ordinal out- 

ome to evaluate and benchmark ontram s in terms of prediction 

erformance and interpretability. For the experiments we use two 

ublicly available data sets as presented in the following section. In 

ddition, we simulate tabular predictors to assess estimation per- 

ormance for the effect estimates in ontram s. 

.1. Data 

UTKFace UTKFace contains more than 23,0 0 0 images of faces 

elonging to all age groups [dataset 24 ]. The ordinal outcome is 

etermined by age using the classes baby (0–3, n 0 = 1894 ), child 

4–12, n 1 = 1519 ), teenager (13–19, n 2 = 1180 ), young adult (20–

0 n 3 = 8068 ), adult (31–45, n 4 = 5433 ), middle aged (46–61, n 5 =
216 ) and senior ( > 61, n 6 = 2395 ) [dataset 25 ]. The images are la-

eled with the people’s age (0 to 116) from which the age-class is 

etermined. In addition, the data set provides the tabular feature 

ex (female, male). As our main goal is not on performance im- 

rovement but on the evaluation of our proposed method, we use 

he already aligned and cropped versions of the images. For some 

xample images see Fig. 4 . 

We simulate tabular predictors x with predefined effects on the 

rdinal outcome of the UTKFace data set, where we assume a pro- 

ortional odds model F (y | x ) = F (ϑ − x � β) (see Section 2.2.1 ).
Y k Z k 

6 
en predictors are simulated, four of which are noise predictors 

hat have no effect on the outcome. The six informative predictors 

re simulated to have an effect of ± log 1 . 5 , ± log 2 and ± log 3 on

he log-odds scale, to reflect small to large effect sizes commonly 

een in medical and epidemiological applications ( Fig. 5 ). All pre- 

ictors are mutually independent of each other and the image data. 

 more detailed description of the simulation procedure is given in 

ppendix B.2. 

Note that in the more complex ontram s involving a CNN, the 

ffect estimates are expected to experience shrinkage towards 0 

ue to implicit regularization by training via stochastic gradient 

escent [26] in the presence of the high-dimensional CNN. 

Wine quality The Wine quality data set consists of 4898 obser- 

ations [dataset 27 ]. The ordinal outcome describes the wine qual- 

ty measured on a scale with 10 levels of which only 6 consecu- 

ive classes (3 to 8, n 3 = 10 , n 4 = 53 , n 5 = 681 , n 6 = 638 , n 7 = 199 ,

 8 = 18 ) are observed. The data set contains 11 predictors, such as 

cidity, citric acid and sugar content. As in [28] , we consider a sub- 

et of the data (red wine, n = 1599 ). 

.2. Models 

The models we use for evaluating and benchmarking the pro- 

osed ontram s are summarized in Table 2 . The explicit CNN ar- 

hitecture are described in Appendix B.1. These models feature dif- 

erent flexibility and interpretability and are trained with the dif- 

erent loss functions described in Sections 2 and 3 and Appendix A. 

or UTKFace, we analyse the data set using deep ensembling [29] , 

 state of the art approach in probabilistic deep learning methods 

eading to more reliable probabilistic predictions [30] . Specifically, 

odels are trained five times with a different weight initialization 

n each iteration. The resulting predicted conditional outcome dis- 

ribution is averaged over the five runs and this averaged condi- 

ional outcome distribution is then used for model evaluation. This 

rocedure is supposed to prevent double descent and improve test 

erformance [30] . The exact training and validation setup used in 

he experiments is described in Appendix B.3. 

.3. Software 

We implement MCC models and ontram s in the two program- 

ing languages R 3.6-3 and Python 3.7. The models are written 

n Keras based on a TensorFlow backend using TensorFlow 
ersion > 2.0 [31,32] and trained on a GPU. Both polr and gen- 

ralized additive proportional odds models are fitted in R using 

ram::polr() [33] and mgcv::gam() [34] , respectively. Fur- 

her analysis and visualization is performed in R . For reproducibil- 

ty, all code is made available on GitHub. 2 

.4. Model evaluation 

Evaluation metrics: The main focus of ontram s is to be able to 

nterpret their individual components and the most flexible on- 

ram is equivalent to the MCC model. In turn, prediction perfor- 

ance of ontram s can only ever be as good as in MCC. There- 

ore, we assess prediction performance mainly to illustrate trading 

ff model flexibility against ease of interpretation. We evaluate the 

rediction performance of ontram s and MCCs with proper scor- 

ng rules, namely the negative log-likelihood (NLL) and the ranked 

robability score (RPS). Roughly speaking, proper scoring rules en- 

ourage honest probabilistic predictions because they take their 

ptimal value when the predicted conditional outcome distribution 

https://www.github.com/LucasKookUZH/ontram-paper
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Fig. 4. Example images for UTKFace. Example images of the seven ordinal age-classes (baby, child, teenager, young adult, adult, middle aged and senior) of the cropped and 

aligned UTKFace data set are presented. 

Table 2 

Summary of the models used for evaluating the ontram methods. In the upper part we list models used for the Wine data, which contain only tabular 

predictors ( x ). In the lower part, we show models for the UTKFace data, which consist of image data and tabular predictors ( x , B ) . Above the thin lines we list 

the baseline models; below the ontram s. For each model, which can be framed as a transformation model, the transformation function is given. Parameters 

in the shift terms of a transformation function can be interpreted as log odds-ratios if F Z is chosen to be the standard-logistic distribution. Then, any model 

involving a simple intercept is an instance of a proportional odds model. 

Data set Model name Abbreviation Trafo h (y k | x , B ) 
UTKFace Multi-class classification MCC 

Multi-class classification + tabular MCC- x 

Complex intercept CI B ϑ k (B ) 

Complex intercept + tabular CI B -LS x ϑ k (B ) − x � β
Simple intercept + complex shift SI-CS B ϑ k − η(B ) 

Simple intercept + complex shift + tabular SI-CS B -LS x ϑ k − η(B ) − x � β
Simple intercept + tabular SI-LS x ϑ k − x � β

Wine Multi-class classification MCC 

Generalized additive proportional odds model GAM ϑ k −
∑ p 

j=1 
β j (x j ) 

Proportional odds logistic regression polr ϑ k − x � β
Complex intercept CI x ϑ k ( x ) 

Simple intercept + GAM complex shift SI-CS 	 x ϑ k −
∑ p 

j=1 
β j (x j ) 

Simple intercept + linear shift SI-LS x ϑ k − x � β

Fig. 5. Simulation of predictors for UTKFace data. X j 
i . i . d . ∼ N (0 , 1 . 55 2 ) , j = 1 , . . . , 10 . 

The predictors X j are simulated such that their effects adhere to the propor- 

tional odds assumption. That is, the effect of β is common to all class boundaries. 

Note that the arrows indicate effects on the log-odds scale of the outcome Y , i.e ., 

F Y (y k | x ) = F L (ϑ k − x � β) . The dotted arrow from B to Y indicates that the image is 

not entering the simulation directly but is assumed to have an effect on the out- 

come. 
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orresponds to the data generating distribution (for details see Ap- 

endix F). In Appendix H we compute additional evaluation met- 

ics which are commonly used for ordinal classification models, 

.e., accuracy and QWK which is discussed in Appendix E. 

Estimation and interpretability To evaluate whether ontram s 

ield reliably interpretable effect estimates of shift components we 

ake use of the simulated tabular predictors and compare the 

nown true effects of the individual predictors to the estimates. 

or other predictors we discuss the plausibility of the estimated 

ffects or, if applicable, compare them to results of other bench- 

ark experiments. 

. Results 

Results for the MCC models and ontram s for the UTKFace and 

ine data are given in the following Sections 5.1 and 5.2 , respec- 

ively. 
7 
.1. UTKFace 

We first evaluate ontram s on the UTKFace data set, which con- 

ains images and tabular predictors that allow to illustrate the in- 

erpretation of the shift terms. As in other applications, age is dis- 

retized and treated as an ordinal outcome (see e.g., [35] ). 

We first train a SI-CS B -LS sex ontram with transformation func- 

ion h (y k | x ) = ϑ k − η(B ) − βsex · 1 ( sex = female ) that includes the

abular predictor sex in addition to the images. We assume that 

he prediction of the age class depends on the appearance of a 

erson and therefore on the image but not on a person’s sex. On 

he other hand, a person’s sex can often be deduced from an im- 

ge, which renders the tabular feature and image data collinear 

nd makes estimation and interpretability of the individual effects 

ore difficult. However, collinear data is representative for most 

ractical applications. We thus expect the estimated coefficient 

sex to be small in comparison to the effect of the image η(B ) , 

hich we expect to be a better predictor of a person’s age. 

For evaluation, we use publicly available data of the actress 

eryl Streep, i.e. , female sex and two images showing her at the 

ge of 41 ( B , age group [31 , 46) ) and 67 ( B 

′ , age group [61 , 117) )

o depict the predicted PDF and estimated log odds-ratio in the SI- 

S B -LS sex model (see Fig. 6 ). The model yields the image-effect es- 

imates η(B ) = 5 . 1 and η(B 

′ ) = 10 . 1 , while the effect of sex stays

onstant ( βsex = 0 . 3 ). As expected η(B 

′ ) > η(B ) , indicating that B 

′ 
s more likely to belong to a higher age group than B . In partic-

lar, the difference between the two estimates yields a log odds- 

atio η(B 

′ ) − η(B ) = 5 , which is interpretable as an exp (5) -fold in-

rease in the odds of belonging to a higher age class compared to 

ll classes below, when changing from B to B 

′ and keeping sex 

onstant. 

For a more systematic and empirical evaluation of the flexibil- 

ty and interpretability of ontram s, we fit seven models with the 

mage data, the 10 simulated tabular predictors with known true 

ffect sizes β and a combination of both (see Table 2 ). The mod- 

ls differ in their flexibility due to different transformation func- 

ions and the parametrization of the loss. In Appendix G, we com- 
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Fig. 6. Predicted densities in a SI-CS B -LS sex ontram once using the image of a 41 

year-old and a 67 year-old Meryl Streep. What sets ontram s apart from other ordi- 

nal DL classifiers, is the directly interpretable effect of changing an image in terms 

of a log odds-ratio. Namely, the odds of belonging to a higher age change by a fac- 

tor of exp (5) when changing image B to B ′ , keeping sex constant. In turn, a change 

in the odds results in a change of the corresponding conditional outcome distribu- 

tion, which puts higher probability mass on larger age groups when changing B to 

B ′ . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 7. Test prediction performance for deep ensembles based on the UTKFace data. 

The figure summarizes the results for the models MCC, MCC- x , CI B , CI B -LS x , SI-CS B , 

SI-CI B -L S x , SI-L S x (x-axes) in terms of negative log-likelihood (A) and ranked proba- 

bility score (B). Lower values in NLL and RPS indicate better predictive performance. 

Baseline models are depticted as red dots, ontram s as blue triangles. C: True versus 

estimated predictor effects. The figure summarizes the true versus estimated effects 

of the simulated tabular predictors of the UTKFace data set. The effect estimates re- 

sult from the linear shift terms, LS x , in the models CI B -LS x , SI-CS B -LS x , SI-LS x . In 

case of correct estimation, the parameters lie on the main diagonal. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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are the MCC model and the CI x ontram to another ordinal clas- 

ification model trained with a loss based on Cohen’s quadratic 

eighted kappa [QWK, 17 ]. 

We first consider the most flexible models, MCC and CI B , which 

re based on the UTKFace image data and only differ in the 

arametrization of the loss function (see Appendix A for the MCC 

nd Eq. (8) for the ontram loss). As expected, the CI B ontram and 

CC model achieve comparable prediction performances in terms 

f NLL and RPS (see Fig. 7 A and B). After including the simulated
8 
abular predictors, the performance in both models increases no- 

ably (see MCC- x and CI B -LS x in Fig. 7 A and B). In case of the

CC- x model, the tabular predictors are attached to the feature 

ector resulting from the convolutional part of the CNN, which al- 

ows interactions between image and tabular predictors and there- 

ore makes the model slightly more flexible than the CI B -LS x . How- 

ver, in contrast to the CI B -LS x , the MCC- x allows no interpretation 

f the effect of the tabular predictors on the outcome. 

Less flexible but more interpretable ontram s are obtained by 

ncluding the image data as complex shift rather than as complex 

ntercept term (SI-CS B ). Although the SI-CS B model is less flexi- 

le than the CI B model, prediction performance is comparable (see 

ig. 7 A and B). Again, adding the simulated tabular data as a linear 

hift term (SI-CS B -LS x ) results in improved prediction performance. 

Using a model with simulated tabular data only (SI-LS x ) yields a 

etter performance than models that include image data only (see 

I-LS x vs. MCC, CI B , SI-CS B in Fig. 7 A and B). However, when com-

aring the models with image data and tabular predictors to the 

odel with tabular predictors only, an increase in prediction per- 

ormance is observed (see SI-LS x vs. MCC- x , CI B -LS x and SI-CS B - 

S x ). This indicates that the images contain additional information 

or age prediction. 

In practice, the ontram s CI B -LS x and SI-CS B -LS x are most at- 

ractive because they provide interpretatable estimates for the ef- 

ects of the tabular predictors with an acceptably low decrease in 

rediction performance. 

To assess whether effect estimates for the tabular predictors 

re reliable in models with and without additional image data, we 

ompare the true effects β to the estimated effects ˆ β for the on- 

ram s with linear shift terms (CI B -LS x , SI-CS B -LS x , SI-LS x ). As sum-

arized in Fig. 7 C, all models recover the correct estimates up to 

inor shrinkage effects in the presence of high-dimensional CNNs. 

.2. Wine quality 

The experiments with the UTKFace data have shown that we 

et reliable and interpretable model components when including 

imulated, mutually independent tabular predictors besides image 

ata. In the following, we summarize a couple of experiments with 

he smaller wine data set containing solely tabular predictors to 

emonstrate how we can estimate reliable linear and non-linear 

ffect estimates for potentially dependent tabular predictors. In ad- 

ition, we evaluate how the ontram parametrization of the loss 

see Eq. (8) ) yields a gain in training speed and how this gain de-

ends on the size of the training data. Note that all those models 

an simply be extended to additionally include image data, e.g., by 

ttaching a complex shift term CS B . 

The wine dataset is a benchmark data set for a proportional 

dds model that allows to interpret the fitted effect estimates as 

og odds-ratios (see Section 2.2.1 ). To illustrate the high flexibility 

f ontram s and that we correctly estimate linear, non-simulated 

abular predictors, we fit a proportional odds model with linear ef- 

ects via a SI-LS x model and compare the model to the same model 

sing the R function tram::Polr() . As expected, Fig. 8 shows 

hat both models yield the same prediction performance in terms 

f NLL (A) and RPS (B) and estimated predictor effects (C). 

GAMs (see Table 2 , SI-CS ∗x with h (y k | D ) = ϑ k −
∑ p 

j=1 
β j (x j ) ) add

nother layer of complexity to the model by allowing non-linear 

ffects for each predictor. Because the individual NNs estimating 

he additive components β j (x J ) do not interact explicitly the esti- 

ated log odds-ratio function retains the interpretability of a pro- 

ortional odds model. Fig. 9 depicts the estimates of an ensem- 

le of ontram GAMs in comparison to a GAM from the R -package 

gcv . Apart from the constraint-enforced smoothness in mgcv ’s 

AM, both models agree in magnitude and shape of the estimated 

redictor effects. For instance, the predictor sulphates has a 
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Fig. 8. Results for the wine quality data based on the test sets of the cross valida- 

tion settings. Panels A and B summarize the prediction performance for the models 

MCC, CI x , GAM, SI-LS x and polr (x-axes) based on the wine quality data set in terms 

of negative log likelihood (A) and ranked probability score (B). Lower values in NLL 

and RPS indicate improved model performance. Results of ontram s are indicated 

as blue triangles, others as red dots. The black point gives the mean across the re- 

spective metric resulting from the single CV folds. C: Effect estimates with 2.5th 

and 97.5th percentile for polr and SI-LS x model over the 20 CV folds of the wine 

quality data set. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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trong positive influence on the rating when increased from 0 to 

.25 (on the transformed scale), in that the odds of the wine being 

ated higher increase by a factor of 7.4, all other predictors held 

onstant ( exp ( ̂  β10 (0 . 25) − ˆ β10 (0)) ≈ exp (2) ≈ 7 . 4 ). Afterwards the

ffect levels off and stays constant for the ontram GAM, due to 
ig. 9. Estimated non-linear effects of 11 tabular predictors on the ordinal quality outcom

dds-ratio functions of an ensemble of 20 runs with different initial weights are shown in

y the mgcv::gam() function in R together with a 95% confidence interval (dashed b

 = 1 , . . . , 11 , in the training data. (For interpretation of the references to colour in this fig

9 
egularization and few wines with higher sulphate levels being 

resent in the training data. The curve estimated by mgcv fol- 

ows smoothness constraints and instead drops with a large con- 

dence interval, also covering 0. GAMs are a special case of com- 

lex shift models, the latter of which allow for higher order inter- 

ctions between the predictors. Conceptually, ontram s enable to 

urther trade off interpretability and flexibility by modelling some 

redictor effects linearly while including others in a complex shift 

r intercept term. If field knowledge suggests non-linearity of ef- 

ects or interacting predictors, they can be included as a complex 

hift or, if the proportionality assumption is violated, in a complex 

ntercept term. From Fig. 9 we can see that most of the coefficients 

ould be safely modelled in a linear fashion, which is also evident 

rom the minor loss in predictive power when comparing the GAM 

gainst the linear shift ontram (see Fig. 8 A, GAM vs. SI-LS x ). 

To assess the effect of respecting the order of the ordinal out- 

ome, we evaluate the most flexible CI x ontram and the MCC 

odel, which solely differ in the parametrization of their loss. 

s in the UTKFace data, both models show the expected agree- 

ent in achieved prediction performance w.r.t. NLL and RPS (see 

ig. 8 A and B). However, the CI x model learns much faster in terms 

f number of epochs until the minimum test loss is achieved, 

ompared to the MCC model. To further investigate this gain in 

earning speed, we split the wine quality data into n/n t , n t ∈ 

 50 , 100 , 200 , 480 } folds of size n t and fit a MCC model and CI x 
ntram to each fold. The median test loss is computed for each 

cenario of size n t . The number of epochs needed to achieve min- 

mal median test loss is summarized in Fig. 10 A. The training 

peed is consistently lower and therefore more efficient for the 

I x ontram than for the MCC model ( Fig. 10 A). The CI x ontram 

ields a slightly better prediction performance (median test NLL) 

or larger sample sizes. This can be explained by the fact that after 
e in the wine data set as achieved by the ontram GAM model. The estimates log 

 blue. The solid black line depicts the estimated log odds-ratio functions estimated 

lack lines). Rugs on the bottom of each plot indicate the observed values for X k , 

ure legend, the reader is referred to the web version of this article.) 
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Fig. 10. Epochs until minimum test loss for varying sizes of the training data using the wine quality data set. The data are split into n/n t , n t ∈ { 50 , 100 , 200 , 480 } folds each 

of which serves as training data for a multi-class classification and a complex intercept ontram . The median test loss is computed for each scenario n t and each epoch. 

Afterwards, the number of epochs until minimum median test loss and the minimum median test loss are recorded. Here the epochs until minimum test loss (A) and the 

minimum test loss (B) are plotted against the 4 scenarios given by n t . 
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00 epochs the MCC model still has not reached the minimum test 

oss ( Fig. 10 B). Note that the gain in training speed is only present

f the outcome is truly ordered. In Appendix C, we show that the 

ffect vanishes when the ordering of the class labels is permuted. 

. Discussion and outlook 

In this work we demonstrate how to unite the classical sta- 

istical approach to ordinal regression with DL models to achieve 

nterpretability of selected model components. This allows us to 

stimate effects for the input data. In case of tabular predictors, 

e prove that the effects are correctly estimated, also in the pres- 

nce of complex image data. Moreover, we show that the most 

exible ontram trained with the reparametrized NLL achieves on- 

ar performance with a MCC DL model using the cross-entropy 

oss. This may first seem counter-intuitive because the cross- 

ntropy loss ignores the outcome’s order. However, the ontram 

LL is a reparametrization of the cross-entropy loss and can, there- 

ore, at most achieve the same performance. The advantages of 

eparametrizing the NLL are (i) a natural scale for the additive and 

ence interpretable decomposition of tabular and image effects, (ii) 

 valid probability distribution for the ordinal outcome and (iii) an 

ncrease in training speed. In this context, interpretability is the 

ain advantage over other state-of-the-art models because it is 

f crucial importance in sensitive applications as, for example, in 

edicine [4] . 

If the focus lies mainly on classification of an ordinal outcome 

nd less on interpretability and probabilistic predictions, the data 

nalyst may be interested in optimizing a classification metric such 

s Cohen’s kappa. Indeed, Cohen’s kappa directly considers the 

utcome’s natural order and misclassifications further away from 

he observed class are penalized more strongly than misclassifica- 

ions closer to the observed class. However, this approach results 

n predictions different from those of regression models such as 

he MCC and CI B , which is further highlighted in Appendix G. In a

egression model, on the other hand, the goal is rather to estimate 

 valid probability distribution which is achieved with proper loss 

unctions such as the NLL. These fundamental differences between 

rdinal classification and regression make a fair comparison nearly 

mpossible, as we highlight in Appendix G. 

Further, we demonstrate how to select an ontram , which pos- 

esses the appropriate amount of flexibility and interpretability for 

 given application. To achieve a higher degree of interpretability, 

exibility has to be restricted, e.g., by moving from a complex in- 

ercept to a simple intercept, complex shift model. However, we 

how that a restriction of flexibility can still yield adequate pre- 
10 
iction performance which may even be similar to that of a more 

exible model. Interpretability of different model components is 

urther showcased for simple models including only tabular pre- 

ictors and more complex models with tabular and image data. 

The modular nature of ontram s makes them highly versatile 

nd applicable to many other problems with ordinal outcome and 

omplex input, such as text or speech data. Instead of using a CNN 

or image data, a recurrent neural network can be used to define 

 more flexible complex intercept or a simpler, but more inter- 

retable complex shift term as in a SI-CS B ontram . Tabular predic- 

ors can then simply be added with linear shift or complex shift 

erms depending on the degree of interpretability the data analyst 

ims for. 

This work shows the potential of deep transformation models 

or ordinal outcomes. The predictive power of deep transformation 

odels on regression problems with continuous outcomes has al- 

eady been demonstrated [6] . However, the approach is easily ex- 

endable to the full range of existing interpretable regression mod- 

ls, including models for count and survival outcomes. The ex- 

ension from ordinal data to count and survival data is hinted at 

y the parametrization of the ontram NLL, which can be viewed 

s an interval-censored log-likelihood over the latent variable Z

or which the intervals are given by the conditional cut points 

 (y k | D ) . For count data these cut points are given by consecutive

ntegers, i.e. , (0,1], (1,2], and so on. In survival data the interval 

s given by (commonly) right censored outcomes when a patient 

rops out of a study or experiences a competing event. In case of 

ight-censoring the interval is given by (t, + ∞ ) for a patient that 

rops out at time t . All benefits in terms of interpretability and 

odularity will carry over to the deep transformation version of 

ther probabilistic regression models by working with an appro- 

riate likelihood and parametrizing the transformation function via 

deep) neural networks. 
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