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ABSTRACT

Outcomes with a natural order commonly occur in prediction problems and often the available input
data are a mixture of complex data like images and tabular predictors. Deep Learning (DL) models are
state-of-the-art for image classification tasks but frequently treat ordinal outcomes as unordered and lack
interpretability. In contrast, classical ordinal regression models consider the outcome’s order and yield
interpretable predictor effects but are limited to tabular data. We present ordinal neural network trans-
formation models (ONTRAMS), which unite DL with classical ordinal regression approaches. ONTRAMS are
a special case of transformation models and trade off flexibility and interpretability by additively decom-
posing the transformation function into terms for image and tabular data using jointly trained neural
networks. The performance of the most flexible oNTRAM is by definition equivalent to a standard multi-
class DL model trained with cross-entropy while being faster in training when facing ordinal outcomes.
Lastly, we discuss how to interpret model components for both tabular and image data on two publicly

available datasets.

© 2021 Published by Elsevier Ltd.

1. Introduction

Many classification problems deal with classes that show a nat-
ural order. This includes for example patient outcome scores in
clinical studies or movie ratings [1]. These ordinal outcome vari-
ables may not only depend on interpretable tabular predictors like
age or temperature but also on complex input data such as medi-
cal images, textual descriptions, or spectra. Depending on the com-
plexity of the input data and the concrete task, different analysis
approaches have been established to tackle the ordinal problems.

Ordinal regression as a probabilistic approach has been studied
for more than four decades [2]. The goal is to fit an interpretable
regression model, which estimates the conditional distribution of
an ordinal outcome variable Y based on a set of tabular predictors.
The ordinal outcome Y can take values in a set of ordered classes
and the tabular predictors are scalar and interpretable like age. Or-
dinal regression models provide a valid probability distribution in-
stead of a single point estimate for the most likely outcome which
is essential to reflect uncertainty in the predictions. Moreover, the
estimated model parameters are interpretable as the effect a sin-
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gle predictor has on the outcome given the remaining predictors
are held constant. This allows experts to assess whether the model
corresponds to their field knowledge and provides the necessary
trust for application in critical decision making. However, there
is a trade-off between interpretability and model complexity. The
higher the complexity of a model, the harder it becomes to directly
interpret the individual model parameters.

Deep Learning (DL) approaches have gained huge popularity
over the last decade and achieved outstanding performance on
complex tasks like image classification and natural language pro-
cessing [3]. The models take the raw data as input and learn rel-
evant features during the training procedure by transforming the
input into a latent representation, which is suitable to solve the
problem at hand. This avoids the challenging task of feature en-
gineering, which is necessary when working with statistical mod-
els. Yet, unlike statistical models, most DL models have a black box
character, which makes it hard to interpret individual model com-
ponents.

DL models for ordinal models typically do not integrate tabular
predictors and yield interpretable effect estimates for tabular and
image data at the same time.

This is a major disadvantage for example in fields like medicine
which requires multiple data modalities for decision making but
also a reliably interpretable model which quantifies the effects of
the predictors on the outcome [4].
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1.1. Our contribution

In this work we introduce ordinal neural network transforma-
tion models (oNTRAMS), which unite classical ordinal regression
with DL approaches while conserving the interpretability of sta-
tistical and flexibility of DL models. We use a theoretically sound
maximum-likelihood based approach and reparametrize the cat-
egorical cross-entropy loss to incorporate the order of the out-
come. This guarantees the estimation of a valid probability distri-
bution. By definition, the reparameterized negative log-likelihood
(NLL) loss is able to achieve the same prediction performance as
a standard DL model trained with cross-entropy loss, but allows a
faster training in case of an ordinal outcome. The main advantage
of the proposed oNTRAMS is that ONTRAMS provide interpretable ef-
fect estimates for the different input data, which is not possible
with other DL models.

We view ordinal regression models from a transformation
model perspective [5,6]. This change of perspective is useful be-
cause it allows a holistic view on regression models, which eas-
ily extends beyond the case of ordinal outcomes. In transfor-
mation models the problem of estimating a conditional out-
come distribution is translated into a problem of estimating the
parameters of a monotonically increasing transformation func-
tion, which transforms the potentially complex outcome distri-
bution to a simple, predefined distribution F, of a continuous
variable.

The goal of ONTRAMS is to estimate a flexible outcome distri-
bution based on a set of predictors including images and tabular
data while keeping components of the model interpretable. oN-
TRAMS are able to seamlessly integrate both types of data with
varyingly complex interactions between the two, by taking a mod-
ular approach to model building. The data analyst can choose the
scale on which to interpret image and tabular predictor effects,
such as the odds or hazard scale, by specifying the simple dis-
tribution function F;. In addition, the data analyst has full control
over the complexity of the individual model components. The dis-
cussed ONTRAMS will contain at most three (deep) neural networks
for the intercepts in the transformation function, the tabular and
the image data. Together with the simple distribution function F;
the output of these neural networks will be used to evaluate the
NLL loss. In the end, the NNs, which control the components of
the model, are jointly fitted by standard deep learning algorithms
based on stochastic gradient descent. In this work, we feature con-
volutional neural networks (CNNs) for complex input data like
images. However, the high modularity of oNTRAMSs enables many
more applications such as recurrent neural networks for text-based
models.

1.2. Organization of this paper

We first give some theoretical background on multi-class clas-
sification and ordinal regression. Afterwards, related work is de-
scribed in Section 2.3 to highlight the contributions of ONTRAMS
to the field. We then provide details about ONTRAMS in Section 3.
Subsequently, we describe the data sets, experiments, and mod-
els we use to study and benchmark oNTRAMS (Section 4). We end
this paper with a discussion of our results and juxtaposition of the
different approaches in light of model complexity, interpretabil-
ity, and predictive performance. We present further results in Ap-
pendix C and complement our discussion of different loss func-
tions and evaluation metrics in Appendices E and F, respectively.
Because most state-of-the-art approaches to ordinal outcomes are
classifiers, we particularly highlight the distinction between ordi-
nal classification and the proposed regression approach of ONTRAMS
in Appendix G.
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2. Background
2.1. Multi-class classification

In DL approaches ordinal outcomes are frequently modeled in
the same way as unordered outcomes using multi-class classifi-
cation (MCC). That is, softmax is used as the last-layer activation
and the loss function is the categorical cross-entropy. The cross-
entropy corresponds to the negative log-likelihood and solely the
probability assigned to the observed class is entering the loss as
Li(h; yii. ;) = P(Y =yy), which ignores the outcome’s natural or-
der (see also Appendix A).

2.2. Ordinal regression models

Ordinal regression aims to characterize the whole conditional
distribution of an ordinal outcome variable given its predictors.
Consider an ordered outcome variable Y with K possible values
Y1 <Yz <...<Yg. The distribution of Y is fully determined by
its probability density function (PDF). However, unlike unordered
outcomes an ordered outcome possesses a well defined cumula-
tive distribution function (CDF) F (y;) :=P(Y <y,), which natu-
rally contains the order. The likelihood contribution for an observa-
tion (yy;, X;) is given by the predicted probability for the observed
class, which can be written as

Li =P =yulx) =P < yulx) —PY <yu-_1)ilx), (1)
for k=1,....,K and P(Y <yg) :=0, P(Y < yg) = 1. Parametrizing
the likelihood contributions using the CDF directly enables to in-
corporate the order of the outcome when formulating regression
models for ordinal data (Section 3). It is worth noting that the
loss is equivalent to the cross-entropy and merely uses a different
parametrization to take the outcome’s natural order into account.

Many ordinal regression models assume the existence of an un-
derlying continuous latent variable (an unobserved quantity) Z. The
ordinal outcome variable Y is understood as a categorized ver-
sion of Z resulting from incomplete knowledge; we only know the
classes in terms of the intervals in which Z lies. Fitting an ordi-
nal regression model based on the latent variable approach aims at
finding cut points h(y,|x) at which Z is separated into the assumed
classes (see Fig. 1 B). Even if Z can not be interpreted directly, us-
ing a latent variable approach has advantages, because the chosen
distribution of Z determines the interpretability of the terms in the
transformation function (see Section 2.2.1).

Moreover, the latent variable approach enables to understand
ordinal regression as a special case of parametric transformation
models, which were recently developed in statistics [5] and are
applicable to a wide range of outcomes with natural extensions
to classical machine learning techniques such as random forests
and boosting. Transformation models are able to model highly
flexible outcome distributions while simultaneously keeping spe-
cific model components interpretable. In transformation models
the conditional outcome distribution of (Y|x) is modeled by trans-
forming the outcome variable (Y|x) to a variable (Z|x) with known
(simple) CDF F;, like the Gaussian or logistic distribution. Transfor-
mation models in general are thus defined by

E (y|x) = E(h(y|x)), (2)
and all models in our proposed framework of ONTRAMS are of this
form.

The goal is then to fit a monotonically increasing transforma-
tion function h, which maps the observed outcome classes (y;|x)
to the conditional cut points

h(yelx), k=1,....K -1, 3)

of the latent variable Z, as illustrated in Fig. 1. In the example
in Fig. 1 the outcome can take five classes and the K—1 cut
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Fig. 1. Transformation model likelihoods for a model with ordinal outcome. Panel
C shows the conditional density of Y given x, which gets mapped onto the den-
sity of the latent variable Z (A) via the transformation function h (B). The likeli-
hood contributions are in fact probabilities and given by the area under the density
of Z between two consecutive cut points in the transformation function. Note that
h(ys|x) = +oo does not show on the plot for the transformation function, but is ev-
ident from the yellow (upper) area under the density of Z. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

points h(y1|x), h(y-|x), h(y3|x), and h(y4|x) have to be estimated.
The first class of Y on the scale of Z is given by the interval
(=00, h(y1|x)], the fifth class as (h(y4|x), +oc0), so often the con-
ventions h(yg|X) = —oo and h(yg|X) = +oo are used. The likelihood
contribution of a given observation (y,;, ;) can now be derived
from the CDF of Z instead of Y and is given by

Li(h; yii, %) = P(Y = yilX) = F Vuil®) — K Y k1)l %1)
=EhWulx)) — E(hyg-1)ilx:)). (4)

The single likelihood contributions are the heights of the steps in
the CDF or equivalently the area under the density of the latent
variable Z between two consecutive cut points (cf. Fig. 1 B, C). Note
that two consecutive cut points enter the likelihood, such that the
natural order of the outcome is used to parametrize the likelihood,
although the likelihood contribution is given by the probability of
the observed class alone. Consequently, minimizing the negative
log-likelihood

n
—t(h: Y10, R1:n) = — Y _ log Li(h; yii. X;) (5)
i=1
estimates the conditional outcome distribution of (Y|x) by esti-
mating the unknown parameters of the transformation function.
Note that in principle this formulation allows us to directly in-
corporate uncertain observations, for instance, an observation may
lie somewhere in [y, ¥ 2], k < K —2 if a rater is uncertain about
the quality of a wine or a patient rates their pain in between two
classes.

2.2.1. Interpretability in proportional odds models

Interpretability of a transformation model depends on the
choice of the distribution F, of the latent variable Z and the
transformation function h. A summary of common interpretational
scales is given in Table 1.

Here, we demonstrate interpretability through the example of
a proportional odds model, which is well known in statistics [7].
For the distribution of Z we choose the standard logistic distribu-
tion (denoted by F ), whose CDF is given by F;(z) = F.(z) := (1+
exp(—z))~!. The transformation function h is parametrized as

J
hyel®) = O =Y Bixj =D —x"B. j=1.....] (6)

j=1
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Table 1

Interpretational scales of shift terms induced by F; [7]. Most link functions
have been studied in the context of proportional odds model neural net-
works and a classification loss [8]. More details concerning the interpreta-
tional scales are given in Appendix D.

E F{‘ Symbol  Interpretation of shift terms
Logistic logit R log odds-ratio

Gompertz cloglog  FRugv log hazard-ratio

Gumbel loglog Foumbel log hazard-ratio for Y, =K+1-Y
Normal probit ] not interpretable directly

A transformation model with such a transformation function is
called linear shift model, since a change Ax; in a single predictor
x;j causes a linear shift of size B;Ax; in the transformation func-
tion.

The popularity of the transformation model with F, = F_ is due
to the insightful interpretation of the parameter 8; as a log odds-
ratio

odds (Y = y[X) (7)

/

lOgORxﬁx’ — log ((%ddS(Y>yk|X)> — /3]’
where odds(Y > yi|x) :=P(Y > y;|x)/P(Y < y;|x). This is depicted
in Fig. 2 for a positive valued 8, where the effect of increasing x by
one unit increases the odds for the outcome to belong to a higher
class. Specifically, the odds of the outcome being in a higher class
than y, is increased by a factor of exp(8;), which holds for each y;.
However, the resulting conditional distribution changes in a more
complex way (Fig. 2 A). Because the effect of 8 is the same for
each class boundary these models are referred to as proportional
odds models [7]. This corresponds to the shape of the transforma-
tion function h being fixed. A more detailed derivation is given in
Appendix D.

2.3. Related work

We summarize related work in the field of deep ordinal regres-
sion and classification and interpretable machine learning.

Prediction models for ordinal outcomes have been studied in
machine learning as extensions of different popular methods like
Gaussian Processes [9], support vector machines [10], and neu-
ral networks [11]. With the advent of deep learning, various ap-
proaches have been proposed to tackle classification and regression
tasks with ordinal outcomes, which we describe in more detail in
the following. Note that we refer to models, which aim to predict a
valid entire conditional outcome distribution as ordinal regression
models, whereas models, which focus on the predicted class label
will be referred to as ordinal classification models.

For instance, the commonly used multi-class classification
model with softmax last layer activation (see Section 2.1) is a re-
gression model (i.e., multinomial regression), whereas most of the
state-of-the-art approaches described below are ordinal classifiers.
In the following we discuss literature on ordinal classification and
literature related to different aspects of our work, i.e., ordinal re-
gression models, transformation models, and interpretability.

Ordinal classification

Deep learning approaches to ordinal regression and classifica-
tion problems range from using an ordinal metric for the eval-
uation of multi-class classification models to the construction of
novel ordinal loss functions and dummy encodings. The earliest
approaches made use of the equivalence of an ordinal predic-
tion problem with outcome Y € {y; < ... <y}, to the K — 1 binary
classification problems given by 1(Y <y,), k=1,...,K [12], which
is still being used in applications such as age estimation [13].

Cheng et al. [14] devised a cumulative dummy encoding for the
ordinal response where for Y =y, we have y;=1 if i<k and 0
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Fig. 2. The conditional probability density, transformation function and latent representation of the ordinal outcome Y with 5 classes depending on a single predictor x which
is increased by Ax =1 from 0 to 1. The density of (Y|x) for x =0 and x = 1 is shown in A. The simple linear shift model h(y,|x) = ¥, — 8 - x imposes a downward shift of
the transformation function by B when increasing the predictor from x = 0 to x = 1 (B). The shift in the transformation function translates into a shift in the conditional cut
points h(y,|x) under the density of the latent variable Z (C). Shifting the transformation function downwards results in higher probabilities of Y belonging to a higher class.
(For a colour version of this figure, the reader is referred to the web version of this article.)

otherwise. Cheng et al. [14] then suggest a sigmoid activation for
the last layer of dimension K, together with two loss functions (rel-
ative entropy and a squared error loss). Similar approaches remain
highly popular in application. For instance, [15] extend the ap-
proach to rank-consistent ordinal predictions. The problem of rank
inconsistency, however, is confined to the K-rank and similar ap-
proaches and does not appear in ordinal regression models, such
as the ones we propose.

Xie and Pun [16] used a similar dummy encoding to train K — 1
binary classifiers, which share a common CNN trunk for image fea-
ture extraction but possess their own fully connected part. This
allows flexible feature extraction while reducing model complex-
ity substantially due to weight sharing. Weight sharing is a natural
advantage of models which are trained with an ordinal loss func-
tion instead of multiple binary losses, which we describe next. A
comparison of ONTRAM against the method described in [16] can
be found in Appendix G.

Recently, the focus shifted towards novel ordinal loss functions
involving Cohen’s kappa, which was first proposed by de La Torre
et al. [17] and subsequently used in “proportional odds model
(POM) neural networks” [18]. POM neural networks and their ex-
tensions to other cumulative link functions in [8] are closely re-
lated to oNTRAMS, proposed in this paper, because they constitute
a special case in which the class-specific intercepts do not depend
on input data (see Section 3). The crucial difference between POM
NNs (as proposed in [18]) and oNTRAMS is the quadratic weighted
Cohen’s kappa (QWK) loss function in POM NNs, compared to a
log-likelihood loss in oNTRAMS. Although POM NNs predict a full
conditional outcome distribution, their focus lies on optimizing a
classification metric (QWK). The idea is to penalize misclassifica-
tions that are further away from the observed class stronger than
misclassifications that are closer to the observed class. In contrast,
in regression approaches, the goal is to predict a valid probability
distribution across all classes. We give more detail on and compare
our proposed method against the QWK loss in Appendices E and G,
respectively. We use QWK-based models as an example to address
the general problem arising when comparing classification and re-
gression models, which address different questions and hence op-
timize distinct target functions.

Ordinal regression Lastly, [19] took a probabilistic approach us-
ing Gaussian processes with an ordinal likelihood similar to the cu-
mulative probit model (cumulative ordinal model with F, = ®) and
a model formulation similar to POM neural networks. We address
further related work concerning technical details in Section 3, such
as the explicit formulation of constraints in the loss function.

Transformation models Deep conditional transformation models
have very recently been applied to regression problems with a

continuous outcome [6]. Sick et al. [6] parametrized the transfor-
mation function as a composition of linear and sigmoid transfor-
mations and a flexible basis expansion that ensures monotonicity
of the resulting transformation function. The authors applied deep
transformation models to a multitude of benchmark data sets with
a continuous outcome and demonstrated a performance that was
comparable to or better than other state-of-the-art models. How-
ever, in one of the benchmark data set the authors treated a truly
ordinal outcome as continuous, as done by all the other benchmark
models. This is indicative for the lack of deep learning models for
ordered categorical regression.

Interpretability In general, deep learning models suffer from a
lack of interpretability of the predictions they make [3]. In DL
models related to image data, interpretability is mostly referred to
as highlighting parts of the image that explain the respective pre-
diction. Often, surrogate models are build on top of the black-box
model’s predictions, which are easier to interpret. One such model
is LIME [20]. For problems with an ordinal outcome, [21] com-
ment on the limited interpretability of the ensemble of neural
networks in the K-rank approach described above and propose
to use a mimic learning technique, which combines the ensem-
ble with a more directly interpretable model. In the present work
we take a different approach to interpretability rooted in statis-
tical regression models. The interpretability of the effect of indi-
vidual input features is given by the fitted model parameters in
an additive transformation function, which is a common modelling
choice for achieving interpretability [4]. We give more detail in
Section 2.2.1 and Appendix D.

3. Ordinal neural network transformation models

Here, we present ordinal neural network transformation mod-
els, which unite cumulative ordinal regression models with deep
neural networks and seamlessly integrate complex data like im-
ages (B) and/or tabular data (x). At the heart of an ONTRAM lies
a parametric transformation function h(y,|x, B), which transforms
the ordinal outcome y, to cut points of a continuous latent vari-
able and controls the interpretability and flexibility of the model
(see Fig. 1). The ordering of the outcome is incorporated in the
ONTRAM loss function by defining it via the cumulative distribution
function

NLL := —% > log (F(h(yiilxi, B)) — E(h(Ye1)il®i, BD))).  (8)
i1

In the following we describe the terms of the parametric transfor-
mation function and their interpretability. The parameters of these
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Fig. 3. Architecture of oNTRAMS. A: The modular building blocks of the transforma-
tion function h are controlled by NNs. Simple intercept and linear shift terms are
modeled using a single-layer neural network. Complex intercept and complex shift
terms are allowed to depend on the input data in a more complex manner and may
be a fully connected or convolutional NN depending on the type of the input data.
The input data D can be images B or tabular predictors x. B: The output of the NNs
control the additive components of the transformation function h. Together with
the choice of F, h determines the full model, from which the likelihood can be
evaluated. During training time (solid lines) the weights of all model components
are trained jointly by minimizing the NLL. After training (dashed lines) the shift
terms in the transformation function can be interpreted, the conditional outcome
distribution can be predicted and the NLL can be evaluated for a given test set.

terms are controlled by NNs, which are jointly fitted in an end-to-
end fashion by minimizing the NLL (Fig. 3).

Modularity The transformation function h determines the com-
plexity and interpretability of an oNTRAM. The simplest transforma-
tion function with only one tabular feature is given by h(y|x) =
¥ — B - x (see Fig. 2). In general a transformation function is mod-
ularly composed of an intercept term, optionally followed by addi-
tive shift terms, which depend in a more or less complex manner
on different input data and are controlled by NNs (see Fig. 3).

The intercept term controls the shape of the transformation
function:

1. Simple intercepts (SI) ¢, k=1,...,K — 1 are unconditional, i.e.,
the shape of the transformation function is independent of the
input data. SIs can be modeled as a single layer neural network
with K — 1 output units and linear activation function. The in-
put is given by 1. The outputs are given by y4, ..., yx_1 control-
ling the intercepts (see Fig. 3).

2. Complex intercepts (CI), on the other hand, depend on the in-
put data, which may be tabular data, image data or a combina-
tion of both, yielding ¥ (x), ©(B), or ¥} (x, B), respectively. Cls
enable more complex transformation functions, whose shape
may vary with the input. Depending on the type of input data,
CIs are modeled using a multi-layer fully connected neural net-
work, a convolutional neural network or a combination of both.
Analogous to SI terms, the number of output units in the last
layer is equal to K —1 with linear activation function, yield-
ing y1(x,B), ..., yk_1(x, B) depending on the input (see upper
right panel in Fig. 3).

Pattern Recognition 122 (2022) 108263

To ensure that the transformation function is non-decreasing,
the outputs y1,..., yx_1 of simple and complex intercept models
are transformed before entering the likelihood via

D=+ i, exp(y), k=2,....K-1,

9
U = —o0, 19127/1,191(:4-00. (9)

The addition of ¥y = —c0 and ¥y = +o00 is important for com-
puting the loss as described in Section 2. Enforcing a monotone
increasing transformation function via Eq. (9), such that ¥y < 4 <

. < Uk, has been done similarly in the literature. In what [14] call
threshold models, y; is squared instead of taking the exponential
to ensure the intercept function is non-decreasing [8,19]. A differ-
ent but related approach is to softly penalize the loss for pair-wise
rank inconsistencies using a hinge loss [22,23]. Note that the spe-
cial case ¥, (x,B) already includes both tabular and image data.
That is, the transformation function and therefore the outcome dis-
tribution is allowed to change with each input ¥ and B, which rep-
resents the most flexible model possible. In fact, this most flexi-
ble oNTRAM is equivalent to a MCC model with softmax as last-
layer activation function and a categorical cross-entropy loss, al-
beit parametrized differently to take the order of the outcome into
account.

Shift terms impose data dependent vertical shifts on the trans-
formation function (see e.g., Fig. 2):

1. Linear shift (LS) terms x" 8 are used for tabular features and are
directly interpretable (see Section 2.2.1). The components of the
parameter 8 can be modeled as the weights of a single layer
neural network with input X, one output unit with linear acti-
vation function and without a bias term (see lower left panel
in Fig. 3).

2. Complex shift (CS) terms depend on tabular predictors or im-
age data. Complex shift terms are modeled using flexible dense
and/or convolutional NNs with input x and/or B, and a sin-
gle output unit with linear activation (see lower right panel
in Fig. 3). Similar to linear shift terms, the output of 8 and
n can be interpreted as the log odds of belonging to a higher
class, compared to all lower classes, if F, = F. Again, this ef-
fect is common to all class boundaries. In contrast to a linear
shift term, we can model a complex shift for each tabular pre-
dictor B(x;) akin to a generalized additive model. Alternatively,
we can model a single complex shift 8(x) for all predictors,
which allows for higher order interactions between the predic-
tors. This way, the interpretation of an effect of a single predic-
tor is lost in favour of higher model complexity.

Interpretability and flexibility In the following, we will present a
non-exhaustive collection of ONTRAMS integrating both tabular and
image data. We start to introduce the least complex model with
the highest degree of interpretability and end with the most com-
plex model with the lowest degree of interpretability.

The simplest ONTRAM conditioning on tabular data ¥ and image
data B is given by

h(ylx.B) = 0 — %" B —1(B), (10)

where ¥, is a simple intercept corresponding to class k, B is the
weight vector of a single layer NN as described above and 7n(B)
the output of a CNN (Fig. 3 A). In this case, 8 and 5 can be in-
terpreted as cumulative log odds-ratios when choosing F, = F (see
Section 2.2.1). The above model can be made more flexible, yet less
interpretable, by substituting the linear predictor for a more com-
plex neural network B, such that

h(ylx.B) = ¥ — B(*) —n(B), (11)

where B (x) is now a log odds ratio function that allows for higher
order interactions between all predictors in x. For instance, one
may be interested in the odds ratio ORg_ g of belonging to a
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higher category when changing an image B to B’ and holding all
other variables constant. As a special case, complex shifts include
an additive model formulation in the spirit of generalized additive
models (GAMs) by explicitly parametrizing the effect of each pre-
dictor x; with a single neural network §;

J
h(yklx?B):ﬂk_zﬂj(xj)_n(B)’J:1?7.] (12)
j=1
For F; = F the complex shift term B;(x) can be interpreted as a
log-odds ratio for the outcome to belong to a higher class than
Y compared to the scenario where 8;(x) =0, all other predictors
kept constant.
Another layer of complexity can be added by allowing the in-
tercept function 9 for Y =y, to depend on the image

h(yilx. B) = D (B) — B(x). (13)
In this transformation function we call #;(B) complex intercept,
because the intercept function is allowed to change with the image
(Fig. 3 A). One does not necessarily have to stop here. Including
both the image and the tabular data in a complex intercept

h(.Vklxv B) = 19]((& B) (14)

represents the most flexible model whose likelihood is equiv-
alent to the one used in MCC models, solely with a different
parametrization. Consequently, solely the most flexible oNTRAMS
achieve on-par performance compared with deep classifiers trained
using the cross-entropy loss, while the less flexible oNTRAMS are
attractive because of their easier interpretability. In fact, we illus-
trate empirically that a minor trade-off in predictive performance
leads to a considerable ease in interpretation.

Computational details The parameters of an ONTRAM are jointly
trained via stochastic gradient descent. The parameters enter the
loss function via the outputs of the simple/complex intercept and
shift terms modeled as neural networks (see Fig. 3 A). The gradient
of the loss with respect to all trainable parameters is computed
via automatic differentiation in the TensorFlow framework. Note
that any pre-implemented optimizer can be used and that there
are no constraints on the architecture of the individual components
besides their last-layer dimension and activation function.

4. Experiments

We perform several experiments on data with an ordinal out-
come to evaluate and benchmark oNTRAMS in terms of prediction
performance and interpretability. For the experiments we use two
publicly available data sets as presented in the following section. In
addition, we simulate tabular predictors to assess estimation per-
formance for the effect estimates in ONTRAMS.

4.1. Data

UTKFace UTKFace contains more than 23,000 images of faces
belonging to all age groups [dataset 24]. The ordinal outcome is
determined by age using the classes baby (0-3, ng = 1894), child
(4-12, nq = 1519), teenager (13-19, n, = 1180), young adult (20-
30 n3 = 8068), adult (31-45, ny = 5433), middle aged (46-61, ns5 =
3216) and senior (>61, ng = 2395) [dataset 25]. The images are la-
beled with the people’s age (0 to 116) from which the age-class is
determined. In addition, the data set provides the tabular feature
sex (female, male). As our main goal is not on performance im-
provement but on the evaluation of our proposed method, we use
the already aligned and cropped versions of the images. For some
example images see Fig. 4.

We simulate tabular predictors ¥ with predefined effects on the
ordinal outcome of the UTKFace data set, where we assume a pro-
portional odds model F (y;|x) = E; (¥ — X7 ) (see Section 2.2.1).
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Ten predictors are simulated, four of which are noise predictors
that have no effect on the outcome. The six informative predictors
are simulated to have an effect of +1og1.5, +log2 and +log3 on
the log-odds scale, to reflect small to large effect sizes commonly
seen in medical and epidemiological applications (Fig. 5). All pre-
dictors are mutually independent of each other and the image data.
A more detailed description of the simulation procedure is given in
Appendix B.2.

Note that in the more complex oNTRAMS involving a CNN, the
effect estimates are expected to experience shrinkage towards 0
due to implicit regularization by training via stochastic gradient
descent [26] in the presence of the high-dimensional CNN.

Wine quality The Wine quality data set consists of 4898 obser-
vations [dataset 27]. The ordinal outcome describes the wine qual-
ity measured on a scale with 10 levels of which only 6 consecu-
tive classes (3 to 8, n3 = 10, ng4 = 53, n5 = 681, ng = 638, n; = 199,
ng = 18) are observed. The data set contains 11 predictors, such as
acidity, citric acid and sugar content. As in [28], we consider a sub-
set of the data (red wine, n = 1599).

4.2. Models

The models we use for evaluating and benchmarking the pro-
posed ONTRAMs are summarized in Table 2. The explicit CNN ar-
chitecture are described in Appendix B.1. These models feature dif-
ferent flexibility and interpretability and are trained with the dif-
ferent loss functions described in Sections 2 and 3 and Appendix A.
For UTKFace, we analyse the data set using deep ensembling [29],
a state of the art approach in probabilistic deep learning methods
leading to more reliable probabilistic predictions [30]. Specifically,
models are trained five times with a different weight initialization
in each iteration. The resulting predicted conditional outcome dis-
tribution is averaged over the five runs and this averaged condi-
tional outcome distribution is then used for model evaluation. This
procedure is supposed to prevent double descent and improve test
performance [30]. The exact training and validation setup used in
the experiments is described in Appendix B.3.

4.3. Software

We implement MCC models and oNTRAMS in the two program-
ming languages R 3.6-3 and Python 3.7. The models are written
in Keras based on a TensorFlow backend using TensorFlow
version >2.0 [31,32] and trained on a GPU. Both polr and gen-
eralized additive proportional odds models are fitted in R using
tram: :polr() [33] and mgcv::gam() [34], respectively. Fur-
ther analysis and visualization is performed in R. For reproducibil-
ity, all code is made available on GitHub.?

4.4. Model evaluation

Evaluation metrics: The main focus of ONTRAMS is to be able to
interpret their individual components and the most flexible onN-
TRAM is equivalent to the MCC model. In turn, prediction perfor-
mance of ONTRAMS can only ever be as good as in MCC. There-
fore, we assess prediction performance mainly to illustrate trading
off model flexibility against ease of interpretation. We evaluate the
prediction performance of oNTRAMS and MCCs with proper scor-
ing rules, namely the negative log-likelihood (NLL) and the ranked
probability score (RPS). Roughly speaking, proper scoring rules en-
courage honest probabilistic predictions because they take their
optimal value when the predicted conditional outcome distribution

2 https://www.github.com/LucasKookUZH/ontram- paper.
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middle aged: 46-61 senior: >61

Fig. 4. Example images for UTKFace. Example images of the seven ordinal age-classes (baby, child, teenager, young adult, adult, middle aged and senior) of the cropped and

aligned UTKFace data set are presented.

Table 2

Summary of the models used for evaluating the oNTRAM methods. In the upper part we list models used for the Wine data, which contain only tabular
predictors (x). In the lower part, we show models for the UTKFace data, which consist of image data and tabular predictors (x, B). Above the thin lines we list
the baseline models; below the oNTRAMS. For each model, which can be framed as a transformation model, the transformation function is given. Parameters
in the shift terms of a transformation function can be interpreted as log odds-ratios if F; is chosen to be the standard-logistic distribution. Then, any model

involving a simple intercept is an instance of a proportional odds model.

Data set Model name Abbreviation Trafo h(y,|x, B)
UTKFace Multi-class classification MCC
Multi-class classification + tabular MCC-x
Complex intercept Clg 9 (B)
Complex intercept + tabular Clg-LSx % (B) —x"B
Simple intercept + complex shift SI-CSg P —n(B)
Simple intercept + complex shift + tabular SI-CSg-LSx P —n(B)—x"B
Simple intercept + tabular SI-LSx D —x"B
Wine Multi-class classification MCC
Generalized additive proportional odds model GAM Gy — ZL] Bi(x;)
Proportional odds logistic regression polr D —x"B
Complex intercept Cly Dy (x)
Simple intercept + GAM complex shift SI-CSy Dy — Z;’:] Bi(x;)
Simple intercept + linear shift SI-LSx K —-x"B
X +log2 5.1. UTKFace
We first evaluate oNTRAMS on the UTKFace data set, which con-
X{1,4,7,10) 0 Y« B tains images and tabular predictors that allow to illustrate the in-
terpretation of the shift terms. As in other applications, age is dis-
e cretized and treated as an ordinal outcome (see e.g., [35]).
og 1.5 . . .
X(5.6) i We first train a SI-CSg-LSgex ONTRAM with transformation func-
+log3 tion h(y|x) = ¥ — n(B) — Bsex - L(sex = female) that includes the
tabular predictor sex in addition to the images. We assume that
X(s0) the prediction of the age class depends on the appearance of a

Fig. 5. Simulation of predictors for UTKFace data. X; 11d. N(0,1.552), j=1,..., 10.

The predictors X; are simulated such that their effects adhere to the propor-
tional odds assumption. That is, the effect of B is common to all class boundaries.
Note that the arrows indicate effects on the log-odds scale of the outcome Y, i.e.,
F (yr|%) = F. (9, — " B). The dotted arrow from B to Y indicates that the image is
not entering the simulation directly but is assumed to have an effect on the out-
come.

corresponds to the data generating distribution (for details see Ap-
pendix F). In Appendix H we compute additional evaluation met-
rics which are commonly used for ordinal classification models,
i.e, accuracy and QWK which is discussed in Appendix E.

Estimation and interpretability To evaluate whether ONTRAMS
yield reliably interpretable effect estimates of shift components we
make use of the simulated tabular predictors and compare the
known true effects of the individual predictors to the estimates.
For other predictors we discuss the plausibility of the estimated
effects or, if applicable, compare them to results of other bench-
mark experiments.

5. Results

Results for the MCC models and oNTRAMS for the UTKFace and
wine data are given in the following Sections 5.1 and 5.2, respec-
tively.

person and therefore on the image but not on a person’s sex. On
the other hand, a person’s sex can often be deduced from an im-
age, which renders the tabular feature and image data collinear
and makes estimation and interpretability of the individual effects
more difficult. However, collinear data is representative for most
practical applications. We thus expect the estimated coefficient
Bsex to be small in comparison to the effect of the image 71(B),
which we expect to be a better predictor of a person’s age.

For evaluation, we use publicly available data of the actress
Meryl Streep, i.e., female sex and two images showing her at the
age of 41 (B, age group [31,46)) and 67 (B’, age group [61, 117))
to depict the predicted PDF and estimated log odds-ratio in the SI-
CSg-LSsex model (see Fig. 6). The model yields the image-effect es-
timates 7(B) = 5.1 and n(B’) = 10.1, while the effect of sex stays
constant (Bsex = 0.3). As expected n(B’) > n(B), indicating that B’
is more likely to belong to a higher age group than B. In partic-
ular, the difference between the two estimates yields a log odds-
ratio n(B’) — n(B) = 5, which is interpretable as an exp(5)-fold in-
crease in the odds of belonging to a higher age class compared to
all classes below, when changing from B to B’ and keeping sex
constant.

For a more systematic and empirical evaluation of the flexibil-
ity and interpretability of oNTRAMS, we fit seven models with the
image data, the 10 simulated tabular predictors with known true
effect sizes B and a combination of both (see Table 2). The mod-
els differ in their flexibility due to different transformation func-
tions and the parametrization of the loss. In Appendix G, we com-
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Fig. 7. Test prediction performance for deep ensembles based on the UTKFace data.
The figure summarizes the results for the models MCC, MCC-x, Clg, Clg-LSy, SI-CSg,
SI-Clg-LSy, SI-LSy (x-axes) in terms of negative log-likelihood (A) and ranked proba-
bility score (B). Lower values in NLL and RPS indicate better predictive performance.
Baseline models are depticted as red dots, ONTRAMS as blue triangles. C: True versus
estimated predictor effects. The figure summarizes the true versus estimated effects
of the simulated tabular predictors of the UTKFace data set. The effect estimates re-
sult from the linear shift terms, LSy, in the models Clg-LSy, SI-CSg-LSy, SI-LSy. In
case of correct estimation, the parameters lie on the main diagonal. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

pare the MCC model and the Cly ONTRAM to another ordinal clas-
sification model trained with a loss based on Cohen’s quadratic
weighted kappa [QWK, 17].

We first consider the most flexible models, MCC and Clg, which
are based on the UTKFace image data and only differ in the
parametrization of the loss function (see Appendix A for the MCC
and Eq. (8) for the oNTRAM loss). As expected, the Clg ONTRAM and
MCC model achieve comparable prediction performances in terms
of NLL and RPS (see Fig. 7 A and B). After including the simulated

Pattern Recognition 122 (2022) 108263

tabular predictors, the performance in both models increases no-
tably (see MCC-x and Clg-LSyx in Fig. 7 A and B). In case of the
MCC-x model, the tabular predictors are attached to the feature
vector resulting from the convolutional part of the CNN, which al-
lows interactions between image and tabular predictors and there-
fore makes the model slightly more flexible than the Clg-LSx. How-
ever, in contrast to the Clg-LSy, the MCC-x allows no interpretation
of the effect of the tabular predictors on the outcome.

Less flexible but more interpretable oNTRAMS are obtained by
including the image data as complex shift rather than as complex
intercept term (SI-CSg). Although the SI-CSg model is less flexi-
ble than the Clg model, prediction performance is comparable (see
Fig. 7 A and B). Again, adding the simulated tabular data as a linear
shift term (SI-CSg-LSy) results in improved prediction performance.

Using a model with simulated tabular data only (SI-LSy) yields a
better performance than models that include image data only (see
SI-LSy vs. MCC, Clg, SI-CSg in Fig. 7 A and B). However, when com-
paring the models with image data and tabular predictors to the
model with tabular predictors only, an increase in prediction per-
formance is observed (see SI-LSy vs. MCC-x, Clg-LSy and SI-CSg-
LSx). This indicates that the images contain additional information
for age prediction.

In practice, the oNTRAMS Clg-LSy and SI-CSg-LSy are most at-
tractive because they provide interpretatable estimates for the ef-
fects of the tabular predictors with an acceptably low decrease in
prediction performance.

To assess whether effect estimates for the tabular predictors
are reliable in models with and without additional image data, we
compare the true effects 8 to the estimated effects B for the on-
TRAMS with linear shift terms (Clg-LSy, SI-CSg-LSy, SI-LSx). As sum-
marized in Fig. 7 C, all models recover the correct estimates up to
minor shrinkage effects in the presence of high-dimensional CNNs.

5.2. Wine quality

The experiments with the UTKFace data have shown that we
get reliable and interpretable model components when including
simulated, mutually independent tabular predictors besides image
data. In the following, we summarize a couple of experiments with
the smaller wine data set containing solely tabular predictors to
demonstrate how we can estimate reliable linear and non-linear
effect estimates for potentially dependent tabular predictors. In ad-
dition, we evaluate how the oNTRAM parametrization of the loss
(see Eq. (8)) yields a gain in training speed and how this gain de-
pends on the size of the training data. Note that all those models
can simply be extended to additionally include image data, e.g., by
attaching a complex shift term CSg.

The wine dataset is a benchmark data set for a proportional
odds model that allows to interpret the fitted effect estimates as
log odds-ratios (see Section 2.2.1). To illustrate the high flexibility
of oNTRAMS and that we correctly estimate linear, non-simulated
tabular predictors, we fit a proportional odds model with linear ef-
fects via a SI-LSxy model and compare the model to the same model
using the R function tram: :Polr (). As expected, Fig. 8 shows
that both models yield the same prediction performance in terms
of NLL (A) and RPS (B) and estimated predictor effects (C).

GAMs (see Table 2, SI-CS% with h(y|D) = & — ﬁ.’:] Bj(x;)) add
another layer of complexity to the model by allowing non-linear
effects for each predictor. Because the individual NNs estimating
the additive components B;(x;) do not interact explicitly the esti-
mated log odds-ratio function retains the interpretability of a pro-
portional odds model. Fig. 9 depicts the estimates of an ensem-
ble of oNTRAM GAMs in comparison to a GAM from the R-package
mgcv. Apart from the constraint-enforced smoothness in mgcv’s
GAM, both models agree in magnitude and shape of the estimated
predictor effects. For instance, the predictor sulphates has a
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Fig. 8. Results for the wine quality data based on the test sets of the cross valida-
tion settings. Panels A and B summarize the prediction performance for the models
MCC, Cly, GAM, SI-LS, and polr (x-axes) based on the wine quality data set in terms
of negative log likelihood (A) and ranked probability score (B). Lower values in NLL
and RPS indicate improved model performance. Results of oNTRAMS are indicated
as blue triangles, others as red dots. The black point gives the mean across the re-
spective metric resulting from the single CV folds. C: Effect estimates with 2.5th
and 97.5th percentile for polr and SI-LSy model over the 20 CV folds of the wine
quality data set. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

strong positive influence on the rating when increased from 0 to
0.25 (on the transformed scale), in that the odds of the wine being
rated higher increase by a factor of 7.4, all other predictors held
constant (exp(Bw(O.ZS) - 310(0)) ~ exp(2) ~ 7.4). Afterwards the
effect levels off and stays constant for the oNTRAM GAM, due to
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regularization and few wines with higher sulphate levels being
present in the training data. The curve estimated by mgcv fol-
lows smoothness constraints and instead drops with a large con-
fidence interval, also covering 0. GAMs are a special case of com-
plex shift models, the latter of which allow for higher order inter-
actions between the predictors. Conceptually, ONTRAMS enable to
further trade off interpretability and flexibility by modelling some
predictor effects linearly while including others in a complex shift
or intercept term. If field knowledge suggests non-linearity of ef-
fects or interacting predictors, they can be included as a complex
shift or, if the proportionality assumption is violated, in a complex
intercept term. From Fig. 9 we can see that most of the coefficients
could be safely modelled in a linear fashion, which is also evident
from the minor loss in predictive power when comparing the GAM
against the linear shift oNTRAM (see Fig. 8 A, GAM vs. SI-LS,).

To assess the effect of respecting the order of the ordinal out-
come, we evaluate the most flexible Cly oNTRAM and the MCC
model, which solely differ in the parametrization of their loss.
As in the UTKFace data, both models show the expected agree-
ment in achieved prediction performance w.r.t. NLL and RPS (see
Fig. 8 A and B). However, the Cly model learns much faster in terms
of number of epochs until the minimum test loss is achieved,
compared to the MCC model. To further investigate this gain in
learning speed, we split the wine quality data into n/n:, n; €
{50, 100, 200, 480} folds of size n; and fit a MCC model and Cly
ONTRAM to each fold. The median test loss is computed for each
scenario of size n;. The number of epochs needed to achieve min-
imal median test loss is summarized in Fig. 10 A. The training
speed is consistently lower and therefore more efficient for the
Clx oNTRAM than for the MCC model (Fig. 10 A). The Cly ONTRAM
yields a slightly better prediction performance (median test NLL)
for larger sample sizes. This can be explained by the fact that after
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Fig. 10. Epochs until minimum test loss for varying sizes of the training data using the wine quality data set. The data are split into n/n, n; € {50, 100, 200, 480} folds each
of which serves as training data for a multi-class classification and a complex intercept oNTRAM. The median test loss is computed for each scenario n; and each epoch.
Afterwards, the number of epochs until minimum median test loss and the minimum median test loss are recorded. Here the epochs until minimum test loss (A) and the

minimum test loss (B) are plotted against the 4 scenarios given by n;.

200 epochs the MCC model still has not reached the minimum test
loss (Fig. 10 B). Note that the gain in training speed is only present
if the outcome is truly ordered. In Appendix C, we show that the
effect vanishes when the ordering of the class labels is permuted.

6. Discussion and outlook

In this work we demonstrate how to unite the classical sta-
tistical approach to ordinal regression with DL models to achieve
interpretability of selected model components. This allows us to
estimate effects for the input data. In case of tabular predictors,
we prove that the effects are correctly estimated, also in the pres-
ence of complex image data. Moreover, we show that the most
flexible oNTRAM trained with the reparametrized NLL achieves on-
par performance with a MCC DL model using the cross-entropy
loss. This may first seem counter-intuitive because the cross-
entropy loss ignores the outcome’s order. However, the ONTRAM
NLL is a reparametrization of the cross-entropy loss and can, there-
fore, at most achieve the same performance. The advantages of
reparametrizing the NLL are (i) a natural scale for the additive and
hence interpretable decomposition of tabular and image effects, (ii)
a valid probability distribution for the ordinal outcome and (iii) an
increase in training speed. In this context, interpretability is the
main advantage over other state-of-the-art models because it is
of crucial importance in sensitive applications as, for example, in
medicine [4].

If the focus lies mainly on classification of an ordinal outcome
and less on interpretability and probabilistic predictions, the data
analyst may be interested in optimizing a classification metric such
as Cohen’s kappa. Indeed, Cohen’s kappa directly considers the
outcome’s natural order and misclassifications further away from
the observed class are penalized more strongly than misclassifica-
tions closer to the observed class. However, this approach results
in predictions different from those of regression models such as
the MCC and Clg, which is further highlighted in Appendix G. In a
regression model, on the other hand, the goal is rather to estimate
a valid probability distribution which is achieved with proper loss
functions such as the NLL. These fundamental differences between
ordinal classification and regression make a fair comparison nearly
impossible, as we highlight in Appendix G.

Further, we demonstrate how to select an oNTRAM, which pos-
sesses the appropriate amount of flexibility and interpretability for
a given application. To achieve a higher degree of interpretability,
flexibility has to be restricted, e.g., by moving from a complex in-
tercept to a simple intercept, complex shift model. However, we
show that a restriction of flexibility can still yield adequate pre-
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diction performance which may even be similar to that of a more
flexible model. Interpretability of different model components is
further showcased for simple models including only tabular pre-
dictors and more complex models with tabular and image data.

The modular nature of oNTRAMS makes them highly versatile
and applicable to many other problems with ordinal outcome and
complex input, such as text or speech data. Instead of using a CNN
for image data, a recurrent neural network can be used to define
a more flexible complex intercept or a simpler, but more inter-
pretable complex shift term as in a SI-CSg ONTRAM. Tabular predic-
tors can then simply be added with linear shift or complex shift
terms depending on the degree of interpretability the data analyst
aims for.

This work shows the potential of deep transformation models
for ordinal outcomes. The predictive power of deep transformation
models on regression problems with continuous outcomes has al-
ready been demonstrated [6]. However, the approach is easily ex-
tendable to the full range of existing interpretable regression mod-
els, including models for count and survival outcomes. The ex-
tension from ordinal data to count and survival data is hinted at
by the parametrization of the oNTRAM NLL, which can be viewed
as an interval-censored log-likelihood over the latent variable Z
for which the intervals are given by the conditional cut points
h(y,|D). For count data these cut points are given by consecutive
integers, ie., (0,1], (1,2], and so on. In survival data the interval
is given by (commonly) right censored outcomes when a patient
drops out of a study or experiences a competing event. In case of
right-censoring the interval is given by (t, +o0o) for a patient that
drops out at time t. All benefits in terms of interpretability and
modularity will carry over to the deep transformation version of
other probabilistic regression models by working with an appro-
priate likelihood and parametrizing the transformation function via
(deep) neural networks.
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