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ABSTRACT
Discovering causal relationships from observational data is a fundamental yet challenging task. Invariant
causal prediction (ICP, Peters, Bühlmann, and Meinshausen) is a method for causal feature selection which
requires data from heterogeneous settings and exploits that causal models are invariant. ICP has been
extended to general additive noise models and to nonparametric settings using conditional independence
tests. However, the latter often suffer from low power (or poor Type I error control) and additive noise models
are not suitable for applications in which the response is not measured on a continuous scale, but reflects
categories or counts. Here, we develop transformation-model (TRAM) based ICP, allowing for continuous,
categorical, count-type, and uninformatively censored responses (these model classes, generally, do not
allow for identifiability when there is no exogenous heterogeneity). As an invariance test, we propose TRAM-
GCM based on the expected conditional covariance between environments and score residuals with uniform
asymptotic level guarantees. For the special case of linear shift TRAMs, we also consider TRAM-Wald, which
tests invariance based on the Wald statistic. We provide an open-source R package tramicp and evaluate
our approach on simulated data and in a case study investigating causal features of survival in critically ill
patients. Supplementary materials for this article are available online, including a standardized description
of the materials available for reproducing the work.
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1. Introduction

1.1. Motivation

Establishing causal relationships from observational data is a
common goal in several scientific disciplines. However, systems
are often too complex to allow for recovery of the full causal
structure underlying the data-generating process. In this work,
we consider the easier task of uncovering the causal drivers of
a particular response variable of interest. We present methods,
theoretical results and user-friendly software for model-based
causal feature selection, where the response may represent a
binary, ordered, count, or continuous outcome and may addi-
tionally be uninformatively censored. We propose tramicp for
causal feature selection, which is based on invariant causal pre-
diction (ICP, Peters, Bühlmann, and Meinshausen 2016) and a
flexible class of regression models, called transformation models
(trams, Hothorn, Möst, and Bühlmann 2018). tramicp relies
on data from heterogeneous environments and the assumption,
that the causal mechanism of the response given its direct causes
(direct w.r.t. the considered sets of covariates) is correctly speci-
fied by a tram and does not change across those environments
(Haavelmo 1943; Frisch et al. 1948; Aldrich 1989; Pearl 2009;
Schölkopf et al. 2012). The causal tram will then produce
score residuals (residuals defined specifically for trams and
potentially censored observations) that are invariant across the
environments. If this assumption is violated (for instance, if

CONTACT Lucas Kook lucasheinrich.kook@gmail.com Institute for Statistics and Mathematics, WU Vienna, Welthandelsplatz 1, Building D4, AT-1020 Vienna,
Austria.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

the environment, which is not included as a covariate, directly
impacts the response) but faithfulness (Spirtes et al. 2000, p. 56)
holds, tramicp is conservative and will produce an uninfor-
mative output. We propose an invariance test based on the
expected conditional covariance between the score residuals and
the environments given a subset S of the covariates, called tram-
GCM. With this invariance test, tramicp recovers a subset of
the direct causes with high probability, by fitting a tram for all
subsets of covariates, computing score residuals, testing whether
those score residuals are uncorrelated with the residualized
environments and lastly, intersecting all subsets for which the
null hypothesis of invariance was not rejected. For the special
case of additive linear trams, we propose another invariance
test, tram-Wald, based on the Wald statistic for testing whether
main and interaction effects involving the environments are
zero.

We illustrate the core ideas of tramicp in the following
example with a binary response and the logistic regression
model (McCullagh and Nelder 2019), which is a tram. We defer
all details on how trams and score residuals are defined to Sec-
tion 2 and describe the tram-GCM and tram-Wald invariance
tests in Section 3 and Appendix A1, respectively.

Example 1 (Invariance in binary generalized linear models). Con-
sider the following structural causal model (Pearl 2009) over
(Y , X1, X2, E):
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E := NE

X1 := −E + N1

Y := 1(0.5X1 > NY)

X2 := Y + 0.8E + N2,

where NE ∼ Bernoulli(0.5), N1 ∼ N(0, 1), N2 ∼ N(0, 1), NY
are jointly independent noise variables and NY follows a stan-
dard logistic distribution. Here, E encodes two environments
in which the distribution of X1 and X2 differ, but the causal
mechanism of Y given its direct cause X1 does not change.

Let us assume that both the above structural causal model
and its implied structure are unknown and that we observe
an iid sample {(ei, x1

i , x2
i , yi)}n

i=1 from the joint distribution of
(E, X1, X2, Y). We further know that Y given its direct causes
is correctly specified by a logistic regression. All remaining
conditionals do not need to satisfy any model assumptions. Our
task is now to infer (a subset of) the direct causes of Y .

To do so, for each subset of the covariates XS, S ⊆ {1, 2}
(i.e., for ∅, {1}, {2}, and {1, 2}), we now (i) fit a binary logistic
regression model, (ii) compute the score residuals yi − P̂(Y =
1 | XS = xS

i ) (from the logistic regression) and residualized
environments ei−P̂(E = 1 | XS = xS

i ) (via a random forest), and
(iii) test whether the two residuals are correlated. Figure 1 shows
the residuals obtained in step (iii) for each non-empty subset of
the covariates.

In this example, even though the model using {X1, X2}
achieves higher predictive accuracy than the model using the
causal parent {X1}, only the model Y | X1 is stable across the
environments. If more than one set is invariant, one can take the
intersection of the invariant sets to obtain a subset of the direct
causes of Y (Peters, Bühlmann, and Meinshausen 2016).

With our openly available R package tramicp (https://CRAN.
R-project.org/package=tramicp), the analysis in this example can
be reproduced with the following code, where df is a data frame
with 500 independent observations from the structural causal
model above.

R> library("tramicp")
R> icp <- glmICP(Y ˜ X1 + X2, data = df,

env = ˜ E, family = "binomial")
R> pvalues(icp, which = "set")

Empty X1 X2 X1+X2
1.82e-02 5.10e-01 4.54e-09 2.22e-03

1.2. Related Work

Several algorithms exist to tackle the problem of causal dis-
covery, that is learning the causal graph from data, includ-
ing constraint-based and score-based methods (Spirtes et al.
2000; Chickering 2002; Pearl 2009; Glymour, Zhang, and Spirtes
2019). Assuming faithfulness, one can hope to recover the causal
graph up to the Markov equivalence class (Verma and Pearl
1990; Andersson, Madigan, and Perlman 1997; Tian and Pearl
2001), for which several algorithms have been proposed based
on observational data, interventional data, or a combination of
both (Spirtes et al. 2000; Chickering 2002; Castelo and Kocka
2003; He and Geng 2008; Hauser and Bühlmann 2015). How-
ever, in many real-world applications learning the full causal
graph may be too ambitious or unnecessary for tackling the
problem at hand. As opposed to causal discovery, causal feature
selection aims to identify the direct causes of a given variable of
interest (the response) from potentially many measured covari-
ates, instead of the full graph (Guyon, Aliferis, and Elisseeff
2007).

Invariant causal prediction (ICP) is an approach to causal
feature selection which exploits invariance of the conditional
distribution of a response given its direct causes under perturba-
tions of the covariates (ICP, Peters, Bühlmann, and Meinshausen
2016). ICP can be formulated from a structural causal modeling,
as well as potential outcome perspective (Hernán and Robins
2010). In contrast to constraint- and score-based algorithms,
ICP requires a specific response variable and data from hetero-
geneous environments.

ICP builds on the concept of invariance and can generally be
formulated as conditional independence between the response
and the environments given a candidate set (Heinze-Deml,

Figure 1. Invariance in binary generalized linear models. By the data generating mechanism in Example 1, we know that the conditional distribution of Y given its direct
cause X1 does not change across the two environments E = 0 and E = 1. When predicting both Y and E from the three sets of covariates {1}, {2} and {1, 2}, the resulting
residuals are uncorrelated only when conditioning on the invariant set {1}. The p-values of the invariance test we introduce in Section 3.1.1 are shown in the panel strips
for the corresponding subset of covariates (we have also added linear model fits, see blue lines). The empty set is omitted, since the score residuals and residualized
environments only take two values.

https://CRAN.R-project.org/package=tramicp
https://CRAN.R-project.org/package=tramicp
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Peters, and Meinshausen 2018). Thus, nonparametric condi-
tional independence tests (Fukumizu et al. 2007; Zhang et al.
2011; Candès et al. 2018; Strobl, Zhang, and Visweswaran 2019;
Berrett et al. 2019) can, in principle, always be applied. However,
if one of the conditioning variables is continuous, conditional
independence testing is not feasible without further assumptions
in the sense that there is no test that simultaneously is level and
has nontrivial power (Shah and Peters 2020). This holds also if
the environments are discrete (Shah and Peters 2020, Remark 4).

As an alternative to conditional independence testing,
model-based formulations of ICP have been formulated for
linear (Peters, Bühlmann, and Meinshausen 2016) and non-
linear additive noise models (“invariant residual distribution
test” proposed in Heinze-Deml, Peters, and Meinshausen 2018).
Diaz et al. (2022) use an “invariant target prediction” test
from Heinze-Deml, Peters, and Meinshausen (2018) for testing
invariance with a binary response by nonparametrically com-
paring out-of-sample area under the receiver operating charac-
teristic (ROC) curve (AUC). Under correct model specification,
model-based ICP can have considerably higher power than its
nonparametric alternative. Model-based ICP has been extended
to generalized linear models (GLMs, see dicussion in Peters,
Bühlmann, and Meinshausen 2016) and sequential data (Pfister,
Bühlmann, and Peters 2019). ICP for GLMs and additive and
multiplicative hazard models has been investigated in Laksafoss
(2020). For real-world applications of ICP with exogenous envi-
ronments, see, for example, Meinshausen et al. (2016), Heinze-
Deml, Peters, and Meinshausen (2018), Christiansen and Peters
(2020), and Migliavacca et al. (2021).

Many applications feature complex response types, such as
ordinal scales, survival times, or counts and the data-generating
mechanism can seldomly be assumed to be additive in the noise.
This is reflected in the most common model choices for these
responses, namely proportional odds logistic (McCullagh 1980;
Tutz 2011), Cox proportional hazards (Cox 1972), and gener-
alized linear models (McCullagh and Nelder 2019), which do
not assume additive noise in general. Together, noncontinuous
responses and nonadditive noise render many causal feature
selection algorithms inapplicable. Moreover, proposed exten-
sions to GLMs and hazard-based models rely on case-specific
definitions of invariance and thus a unified view on linear,
generalized linear, hazards, and general distributional regression
is yet to be established.

In practice, a model-based approach can be desirable,
because it leads to interpretable effect estimates, such as odds
or hazard ratios. However, there is a tradeoff between model
intelligibility and misspecification. Many commonly applied
regression models are not closed under marginalization or
the inclusion or exclusion of covariates that are associated
with the response (collapsibility, Greenland 1996; Greenland,
Pearl, and Robins 1999; Didelez and Stensrud 2022, see also
Appendix A2).

1.3. Summary

Formally, we are interested in discovering the direct causes of
a response Y ∈ Y ⊆ R among a potentially large number
of covariates X ∈ X1 × · · · × Xd ⊆ Rd. Consider a set

S∗ ⊆ {1, . . . , d} (the reader may think about the “direct causes”
of Y) and assume that Y | XS∗ is correctly specified by a tram
while all other conditionals remain unspecified. In Section 2.2,
we define structural causal trams and there, S∗ will be the set
of causal parents of Y . Thus, from now on, we refer to S∗ as
the causal parents of Y . trams characterize the relationship
between features and response via the conditional cumulative
distribution function (CDF) FY|XS∗=xS∗ (y) := P(Y ≤ y |
XS∗ = xS∗) on the quantile-scale of a user-specified CDF FZ .
More specifically, when using trams, one models the increasing
function h(· | xS∗) := F−1

Z ◦ FY|XS∗=xS∗ (·), called a trans-
formation function. The name stems from the fact that for all
xS∗ its (generalized) inverse transforms samples of Z ∼ FZ
to samples from the conditional distribution Y | XS∗ = xS∗ .
Specific choices of FZ and further modeling assumptions on
the functional form of h give rise to many well-known models
(examples below). Throughout the article we illustrate tramicp
with a binary response (Example 2) and give additional examples
with a count and survival response in Appendix A3. None of
the examples can be phrased as additive noise models of the
form Y = f (X) + ε with X ⊥⊥ ε. Together with the hardness
of conditional independence testing (Shah and Peters 2020, see
also above), this motivates the need for causal feature selection
algorithms in more flexible nonadditive noise models.

Example 2 (Binary logistic regression). The binary logistic regres-
sion model (binomial GLM) with Y := {0, 1} can be phrased in
terms of the conditional distribution FY|XS∗=xS∗ (0) = expit(ϑ −
(xS∗)
β), where expit(·) = logit−1(·) = (1 + exp(−·))−1

denotes the standard logistic CDF, and ϑ denotes the baseline
(xS∗ = 0) log-odds for belonging to class 0 rather than 1. Here,
β is interpretable as a vector of log odds-ratios. The model
can informally be written as FY|XS∗=xS∗ (y) = expit(hY(y) +
(xS∗)
β), where hY(0) := ϑ and hY(1) := +∞. The latter way
of writing the model extends to ordered responses with more
than two levels Y := {y1, y2, . . . , yK} with y1 < y2 < · · · < yK ,
hY(yk) := ϑk, for all k and for k = 2, . . . , K, ϑk > ϑk−1, using
the convention ϑK = +∞ (see McCullagh 1980, proportional
odds logistic regression).

In Example 2, we have assumed that the response given its
causal parents is correctly specified by an linear shift tram (see
Definition 5 for more details). If conditioning on a set that is not
S∗ always yielded a model misspecification, one could attempt
to identify the set of causal parents by testing, for different sets
XS of covariates, whether the model for Y given XS is correctly
specified. However, in Proposition 10, we prove that, in general,
such a procedure does not work. More precisely, there exists a
pair of structural causal models such that both induce the same
observational distribution, and in both, the response given its
causal parents is correctly specified by an (linear shift) tram but
the parental sets differ.

In this work, following a line of work in causal discov-
ery (Peters, Bühlmann, and Meinshausen 2016; Meinshausen
et al. 2016; Heinze-Deml, Peters, and Meinshausen 2018; Chris-
tiansen and Peters 2020), we instead assume to have access to
data from heterogeneous environments. Given such data, we
define invariance in trams and propose invariance tests based
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on the expected conditional covariance between the environ-
ments and score residuals (tram-GCM) and an invariance test
based on the Wald statistic for linear shift trams in particular
(tram-Wald). We prove that the tram-GCM test is uniformly
asymptotically level α for any α ∈ (0, 1) (Theorem 15) and
demonstrate empirically that it has power comparable to or
higher than nonparametric conditional independence testing.
In the context of the result on the hardness of assumption-
free conditional independence testing assumptions for con-
tinuous distributions (Shah and Peters 2020), our theoretical
results show that, under mild assumptions on the relationship
between E and X, the model class of trams can be suffi-
ciently restrictive to allow for useful conditional independence
tests.

The rest of this article is structured as follows. Section 2.1
gives a technical introduction to transformation models which
can be skipped at first reading. We introduce structural causal
trams in Section 2.2 and show that in this class, the set of
causal parents is, in general, not identified (Section 2.3). In
Section 3, we present the proposed tram-GCM invariance test
and its theoretical guarantees. We apply tramicp to discover
causal features of survival in critically ill hospitalized patients
in Section 4.

2. Using Transformation Models for Causal Inference

Transformation models, as introduced by Box and Cox (1964)
in their earliest form, are models for the conditional cumulative
distribution function of a response given covariates (Doksum
1974; Bickel and Doksum 1981; Cheng, Wei, and Ying 1995;
Hothorn, Kneib, and Bühlmann 2014). trams transform the
response conditional on covariates such that the transformed
response can be modeled on a fixed, continuous latent scale.
Given data and a finite parameterization, the transformation
can be estimated via maximum likelihood (Hothorn, Möst, and
Bühlmann 2018). We formally define trams as a class of non-
linear nonadditive noise models depending on the sample space
of both response and covariates. Our treatment of trams may
appear overly mathematical; however, the formalism is needed
to formulate and prove the identification result (see Proposi-
tion 10 in Section 2.3) and the uniform asymptotic level guar-
antee for the tram-GCM invariance test (Theorem 15). A more
intuitive introduction to trams can be found in Hothorn, Möst,
and Bühlmann (2018), for example. We then embed trams into
a causal modeling framework, using structural causal models
(SCMs, Pearl 2009; Bongers et al. 2021). We adapt standard
results from parametric (Hothorn, Möst, and Bühlmann 2018)
and semi-parametric (McLain and Ghosh 2013) maximum like-
lihood estimation to obtain results on consistency and asymp-
totic normality, which are exploited by the proposed invariance
tests.

2.1. Transformation Models

Let R := R ∪ {−∞, +∞} denote the extended real line.
Throughout the article, let Z denote the set of functions
FZ : R → [0, 1] that are (i) strictly increasing with
limx→−∞ FZ(x) = 0, limx→∞ FZ(x) = 1, (ii) three-times

differentiable and have a log-concave derivative fZ = F′
Z when

restricted to R, and (iii) satisfy FZ(−∞) = 0 and FZ(+∞) = 1.
We call Z the set of extended differentiable cumulative distri-
bution functions. Given that a CDF F : R → R satisfies (i)
and (ii), we may add (iii) and refer to the resulting function as
an extended CDF. For instance, the extended standard logistic
CDF is given by FSL(z) = (1 + exp(−z))−1 for all z ∈ R

and FSL(−∞) = 0 and FSL(+∞) = 1. Besides FSL, in our
applications, we consider the extended versions of the standard
normal CDF �, and the standard minimum extreme value CDF
FminEV : z �→ 1 − exp(− exp(z)). By slight abuse of notation,
we use the same letters �, FSL, FminEV, for the extended CDFs.
In general, specification of a transformation model requires
choosing a particular FZ ∈ Z . Further, for a symmetric positive
semidefinite matrix A, let λmin(A) denote its smallest eigenvalue
and ‖A‖op denote its operator norm. For all n ∈ N, we write [n]
as shorthand for {1, . . . , n}.

We call a function h : R → R extended right-continuous
and increasing (ERCI) on Y ⊆ R if (i) it is right-continuous
and strictly increasing on Y and fulfills h(minY) > −∞ (if
minY exists), (ii) for all y < inf Y , we have h(y) = −∞,
(iii) for all y > supY , we have h(y) = +∞, (iv) for all t ∈
(inf Y , supY) \Y , we have h(t) = h(¯t), where ¯t := sup{υ ∈ Y :
υ < t} and (v) limυ→−∞ h(υ) = −∞ and limυ→∞ h(υ) = ∞.
Condition (iv) is needed to ensure that h is piece-wise constant
outside of Y . Finally, for a function f : R → R, we denote the
derivative f ′ : R → R s.t. for all x ∈ R, f ′(x) = d

du f (u)|u=x.
We are now ready to define the class of transformation
models.

Definition 3 (Transformation model). Let Y ⊆ R and X :=
X1 × · · · × Xd ⊆ Rd, where for all i, Xi ⊆ R. The set of all
transformation functions on Y × X is defined as

H∗
Y ,X :=

{
h : R × X → R

∣∣∀x ∈ X , h(· | x) is ERCI on Y
}

.

Then, for a fixed error distribution FZ ∈ Z and a set of
transformation functions HY ,X ⊆ H∗

Y ,X , the family of trams
M(FZ ,Y ,X ,HY ,X ) is defined as the following set of condi-
tional cumulative distribution functions1 (see also Definition 2
in Hothorn, Möst, and Bühlmann 2018):

M(FZ ,Y ,X ,HY ,X ) := {
FY|X=· : R × X → [0, 1] ∣∣

∃h ∈ HY ,X : ∀x ∈ X ∀y ∈ R,
FY|X=x(y) = FZ(h(y | x))

}
.

As such, a single tram is fully specified by (FZ , h), FZ ∈ Z , h ∈
HY ,X . The condition that for all x ∈ X , h(· | x) is ERCI on Y
ensures that the support of the induced conditional distribution
specified by FY|X=x is Y . Further, for all x ∈ X and z ∈ R, we
write h−1(z | x) := inf{y ∈ Y : z ≤ h(y | x)} for the inverse
transformation function.

1In Proposition 27 in Appendix E2, we show that M indeed only contains
CDFs.
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The inverse transformation function h−1(· | x) at a given
x can be interpreted analogously to a quantile function: Given
some X = x, we can obtain an observation from FY|X=x
by sampling an observation from FZ and passing it through
h−1(· | x).

In statistical modeling, it is common to additionally assume
additivity of the effects of X on a specific scale. For instance, in
linear regression the covariates enter as a linear predictor on the
scale of the conditional mean. In this work, we restrict ourselves
to the class of shift trams in which additivity is assumed on the
scale of the transformation function.

Definition 4 (Shift trams). Let Y , X , and FZ ∈ Z be as in
Definition 3. Further, let F := {f : X → R | f measurable}
and HY := {hY : R → R | hY is ERCI on Y}. Let the set of shift
transformation functions be defined as

Hshift
Y ,X := {

h ∈ H∗
Y ,X | ∃hY ∈ HY ,

f ∈ F : ∀x ∈ X , h(· | x) = hY(·) − f (x)
}

.

Then, M(FZ ,Y ,X ,Hshift
Y ,X ) denotes the family of shift trams

and a tram FZ ◦ h is called shift tram iff h ∈ Hshift
Y ,X . Further,

any hY ∈ HY is referred to as a baseline transformation.

We next introduce the subset of linear shift trams in which
the covariates enter as a linear predictor.

Definition 5 (Linear shift trams). Consider shift trams specified
by FZ ,Y ,X ,F ,Hshift

Y ,X , as in Definition 4. Let b : X → Rb

be a finite collection of basis transformations and define Fb :=
{f ∈ F | ∃β ∈ Rb s.t. f (·) = b(·)
β}. The set of linear shift
transformation functions w.r.t. b is defined as

Hlinear
Y ,X (b) :=

{
h ∈ Hshift

Y ,X
∣∣ ∃hY ∈ HY ,

f ∈ Fb : ∀x ∈ X : h(· | x) = hY(·) − f (x)
}

.

Then, M(FZ ,Y ,X ,Hlinear
Y ,X (b)) denotes the family of linear shift

trams w.r.t. b. Further, a tram FZ ◦ h is called linear shift tram
w.r.t. b iff h ∈ Hlinear

Y ,X (b). For the special case of b : x �→ x, we
write Hlinear

Y ,X and refer to the class and its members as linear shift
trams.

Estimation and inference in trams can be based on the
log-likelihood function—if it exists. The following assumption
ensures that this is the case.

Assumption 1. We have HY ,X ⊆ Hshift
Y ,X . Furthermore, if Y is

uncountable, FZ ,X ,HY ,X are such that for all x ∈ X and h ∈
HY ,X ,

fY|X=x(·; h) := F′
Z(h(· | x))h′(· | x), (1)

where h′(y | x) := d
dυ

h(υ | x)|υ=y, is well-defined and a density
(w.r.t. Lebesgue measure) of the conditional CDF induced by the
tram.

Assumption 1 allows us to define (strictly positive) canonical
conditional densities with respect to a fixed measure that we

denote by μ: If Y is countable, we let μ denote the counting
measure onY and for all y ∈ Y , define the canonical conditional
density by fY|X=x(y; h) := FZ(h(y | x)) − FZ(h(

¯
y | x)), where

¯
y := sup{υ ∈ Y : υ < y}.2 If Y is uncountable, we let μ

denote the Lebesgue measure restricted to Y and the canon-
ical conditional density is then defined by (1). In either case,
HY ,X ⊆ Hshift

Y ,X ensures that for all x and y ∈ Y , fY|X=x(y; h) >

0. Thus, for (FZ ,Y ,X ,HY ,X ) satisfying Assumption 1, we can
define the tram log-likelihood as � : HY ,X ×Y ×X → R with
�(h; y, x) := log fY|X=x(y; h).

When applying ICP to linear additive noise models, invari-
ance can be formulated as uncorrelatedness between residuals
and environments. In trams, however, the response can be cat-
egorical, reducing the usefulness of classical residuals. Instead,
score residuals (Lagakos 1981; Korepanova et al. 2020; Kook,
Sick, and Bühlmann 2022) are a natural choice for testing invari-
ance of trams. Score residuals were first introduced by Lagakos
(1981) for multiplicative hazard models (see also Korepanova
et al. 2020, for non-multiplicative hazard models) and extended
to linear shift trams by Kook, Sick, and Bühlmann (2022,
Definition 2). Score residuals coincide with scaled least-squares
residuals in linear regression with normal errors and martin-
gale residuals in the Cox proportional hazards model (Barlow
and Prentice 1988) and directly extend to censored responses
(Lagakos 1981; Farrington 2000). In this work, score residuals
play a major role in formulating invariance tests (Section 3) and
have been used for causal regularization in a distributional ver-
sion of anchor regression (Rothenhäusler et al. 2021; Kook, Sick,
and Bühlmann 2022). For defining score residuals, we require
the following assumption (which, by definition, is satisfied for
Hshift

Y ,X and Hlinear
Y ,X ).

Assumption 2. HY ,X is closed under scalar addition, that is, for
all h ∈ HY ,X and α ∈ R, we have3 h + α ∈ HY ,X .

Definition 6 (Score residuals, Lagakos, 1981; Kook, Sick, and
Bühlmann, 2022). Let Y , X , FZ ∈ Z and HY ,X ⊆ H∗

Y ,X be as
in Definition 3. Impose Assumptions 1 and 2. Then, considering
α ∈ R, the score residual R : HY ,X × Y × X → R is defined as

R : (h; y, x) �→ ∂

∂α
�(h + α; y, x)

∣∣
α=0.

Example 7 (Binary logistic regression, cont’d). The family of
binary linear shift logistic regression models is given by
M(FSL, {0, 1},X ,Hlinear

Y ,X ). We can thus write for all x ∈ X , h(· |
x) := hY(·)−x
β with hY(0) := ϑ and, by convention, hY(1) :=
+∞. The likelihood contribution for a given observation (y, x)

is FSL(h(0 | x))1−y(1 − FSL(h(0 | x))y. The score residual is
given by R(h; y, x) = 1 − y − FSL(h(0 | x)). Further, the inverse
transformation function is given by h−1 : (z, x) �→ 1(z ≥
ϑ − x
β).

2.2. Structural Causal Transformation Models

Next, we cast trams into a structural causal modeling frame-
work (Pearl 2009) and return to our examples from Section 1.

2We adopt the convention that the supremum of the empty set is −∞.
3We adopt the convention that for all α ∈ R, −∞+α = −∞ and ∞+α = ∞.
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For all subsets S ⊆ [d], define X S to be the projection of X
onto the ordered coordinates in S. For the rest of this article,
we restrict ourselves to shift trams. In this case, any “global”
model class HY ,X naturally induces submodel classes HY ,X S ⊆
H∗

Y ,X S for all S ⊆ [d] by the following construction: HY ,X S :=
{h ∈ H∗

Y ,X S | ∃hglobal ∈ HY ,X s.t. ∀x ∈ X , hglobal(· | x) =
h(· | xS)}. If (FZ ,Y ,X ,HY ,X ) satisfies Assumption 1, then
(FZ ,Y ,X S,HY ,X S) does too. We are now ready to define struc-
tural causal trams.

Definition 8 (Structural causal tram). Let Y , X , FZ ∈ Z be as
in Definition 3. Let HY ,X ⊆ H∗

Y ,X be a class of transformation
functions such that Assumption 1 holds. Let (Z, NX) be jointly
independent with Z ∼ FZ . Then, a structural causal tram C over
(Y , X) is defined as

C :=
{

Xj := gj(X, Y , NXj), ∀j ∈ [d]
Y := h−1(Z | XS∗),

(2)

where S∗ ⊆ [d], h ∈ HY ,X S∗ is the causal transformation func-
tion and paC(Y) := S∗ denotes the set of causal parents of Y in C
and gj, j ∈ [d], are arbitrary measurable functions. By PC

(Y ,X) we
denote the observational distribution induced by C. We assume
that the induced graph (obtained by drawing directed edges
from the observed variables on the right-hand side to variables
on the left-hand side) is acyclic. (This, in particular, implies
that the function gj does not depend on Xj.) We denote by
C(FZ ,Y ,X ,HY ,X ) the collection of all structural causal trams
with error distribution FZ and causal transformation function
h ∈ HY ,X .

2.3. Non-Identifiability of the Causal Parents in
Transformation Models

We now show that performing causal feature selection in struc-
tural causal transformation models requires further assump-
tions. We consider a response variable Y and a set of covariates
X and assume that (Y , X) are generated from an (unknown)
structural causal tram (defined in (2)) with (known) HY ,X �

H∗
Y ,X . In our work, the problem of causal feature selection

concerns learning the causal parents pa(Y) given a sample of
(Y , X) and knowledge of FZ , Y , X , HY ,X (which specifies the
model class M(FZ ,Y ,X ,HY ,X )).

In this work, we specify the model class for the conditional
of the response, given its causal parents, Y | Xpa(Y) by a tram;
the remaining conditionals are unconstrained. Identifiability of
causal structure has been studied for several model classes that
constrain the joint distribution (Y , X). When considering the
class of linear Gaussian SCMs, for example, the causal parents
are in general not identifiable from the observational distribu-
tion (as there are linear Gaussian SCMs with a different struc-
ture inducing the same distribution). This is different for other
model classes: When considering linear Gaussian SCMs with
equal noise variances (Peters and Bühlmann 2013), linear non-
Gaussian SCMs (Shimizu 2014) or nonlinear Gaussian SCMs
(Hoyer et al. 2008; Peters et al. 2014), for example, the graph

structure (and thus the set of causal parents of Y) is identifiable
under weak assumptions (identification then becomes possible
by using goodness-of-fit procedures). To the best of our knowl-
edge, identifiability in such model classes (i.e., recovering the
causal parents of Y , not the entire graph or equivalence classes)
has not been studied when constraining only the conditional
distribution of Y given Xpa(Y).

trams are generally not closed under marginalization (see
Appendix A2 for a detailed discussion on non-collapsability)
and one may hypothesize that this model class allows for iden-
tifiability of the parents (e.g., by considering different sub-
sets of covariates and testing for goodness of fit). We now
prove that this is not the case: In general, for trams (and
even for linear shift trams), the causal parents are not iden-
tifiable from the observed distribution. Instead, additional
assumptions are needed to facilitate causal feature selection in
trams.

Definition 9 formally introduces the notion of identifiability
of the causal parents and Proposition 10 provides the non-
identifiability result.

Definition 9 (Subset-identifiability of the causal parents). Let C
denote a collection of structural causal models. The set of causal
parents is said to be C-subset-identifiable if for all pairs C1, C2 ∈
C it holds that

P
C1
(Y ,X) = P

C2
(Y ,X) �⇒ paC1(Y) ⊆ paC2(Y) ∨

paC2(Y) ⊆ paC1(Y).

Proposition 10 (Non-subset-identifiability). For all A ⊆ R that
are either an interval or countable, FZ ∈ Z , Y ⊆ R, there
exists a class of transformation functions HY ,A×A ⊆ Hshift

Y ,A×A �

H∗
Y ,A×A, such that the set of causal parents is not C(FZ ,Y , A ×

A,HY ,A×A)-subset identifiable.

A proof is given in Appendix E1.1, where we construct a
joint distribution over three random variables (Y , X1, X2), in
which the two conditionals Y | X1 and Y | X2 are trams.
This implies that there are two structural causal trams that have
identical observational distributions, while Y has two different
(non-empty) sets of causal parents that do not overlap. The proof
in Appendix E1.1 characterizes how to construct such a joint dis-
tribution for shift trams. For illustrative purposes, we present
a concrete example in Appendix E1.1 in which Y = X 1 =
X 2 = {1, 2, 3} and Y | X1 and Y | X2 are proportional odds
logistic regression models. We then sample from the induced
distribution We sample from the induced distributions of the
two structural causal trams constructed in the proof and apply
the naive method described above of performing goodness-
of-fit tests to identify the parents. We see that this method
indeed fails to identify a non-empty subset of the parents in this
example.

Instead of subset-identifiability, one can also consider a
stronger notion of full identifiability, which states that the set
of causal parents can be uniquely determined by the observed
distribution (formally defined in Appendix A4). Proposition 10
immediately implies that the set of causal parents is not fully
identifiable either.
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3. Transformation Model Invariant Causal Prediction

Even if the observational distribution is insufficient to iden-
tify causal parents, identifiability can become possible if we
have access to data from multiple, heterogeneous environments.
Invariant causal prediction (ICP, Peters, Bühlmann, and Mein-
shausen 2016) exploits the invariance of causal mechanisms
(Haavelmo 1943; Frisch et al. 1948; Aldrich 1989; Pearl 2009;
Schölkopf et al. 2012) under interventions on variables other
than the response. Depending on the response variable, multi-
center clinical trials, data collected from different countries or
different points in time may fall into this category. We then
show that under Setting 1, the set of causal parents is subset-
identifiable (Proposition 12) and fully identifiable if the environ-
ments are sufficiently heterogeneous (Proposition 13).

Setting 1 (Data from multiple environments). Let Y , X , FZ ∈
Z be as in Definition 3 and let HY ,X ⊆ H∗

Y ,X be a class of
transformation functions such that Assumptions 1 and 2 hold.
Let C∗ be a structural causal tram (Definition 8) over (Y , X, E)

such that

C∗ :=

⎧⎪⎨⎪⎩
Ek := mk(X, NEk), ∀k ∈ [q]
Xj := gj(X, E, Y , NXj), ∀j ∈ [d]
Y := h−1∗ (Z | XS∗),

where h∗ ∈ HY ,X S∗ with S∗ ⊆ [d] denoting the parents of Y and
(Z, NX , NE) denoting the jointly independent noise variables.
By definition, the induced graph G∗ (containing the variables
E1, . . . , Eq, X1, . . . , Xd, Y) is acyclic. In this setup, the random
vector E encodes the environments and takes values in E ⊆
Rq. We further assume that the parents of E can only be non-
descendants4 of Y in G∗, which is satisfied, for example, if E is
exogeneous (that is, each Ek is a function of NEk only); E may be
discrete or continuous. An example of a DAG contained in this
setup is depicted above. By Dn := {(yi, xi, ei)}n

i=1, we denote an
iid sample from P

C∗
(Y ,X,E).

As for ICP, invariance plays a key role for tramicp. We say a
subset of covariates is invariant if the corresponding transfor-
mation model correctly describes the conditional distribution
across the environments E. More formally, we have the following
definition.

Definition 11 ((FZ ,HY ,X )-invariance). Assume Setting 1. A
subset of covariates S ⊆ [d] is (FZ ,HY ,X )-invariant if there

4A node is called a non-descendant of Y inG∗ if there is no directed path from
Y to that node in G∗.

exists hS ∈ HY ,X S , such that for P(XS,E)-almost all (xS, e),

(Y | XS = xS, E = e) and (Y | XS = xS) are identical
with conditional CDF FZ(hS(· | xS)).

If an invariant transformation function hS according to Defi-
nition 11 exists, it is PXS -almost surely unique (see Lemma 31 in
Appendix E2). Proposition 12 shows that the parental set fulfills
(FZ ,HY ,X )-invariance, which is sufficient to establish coverage
guarantees for invariant causal prediction in trams. A proof is
given in Appendix E1.2.

Proposition 12. Assuming Setting 1, the set of causal parents S∗
is (FZ ,HY ,X )-invariant.

The set of causal parents S∗ together with the causal trans-
formation function h∗ in Setting 1 may not be the only set
satisfying (FZ ,HY ,X )-invariance. In this vein, we define the set
of identifiable causal predictors as

SI :=
⋂

S⊆[d]:S is (FZ ,HY ,X )-invariant
S.

Since (FZ ,HY ,X )-invariance is a property of the observed dis-
tribution, SI is identifiable from the observed distribution, too.
By Proposition 12, SI ⊆ S∗. Thus, the causal parents S∗ are
subset-identifiable. In a modified version of Setting 1 in which E
is among the causal parents of Y (see Setting 2 in Appendix A5)
and the induced distribution is faithful w.r.t. the induced graph
(see Spirtes et al. 2000, p. 56), the set of identifiable causal pre-
dictors is empty (because there exists no (FZ ,HY ,X )-invariant
set; we prove this statement as Proposition 20 in Appendix A5).

Furthermore, if the environments induce a sufficient amount
of heterogeneity in the data, in the sense that S∗ ⊆ ch(E), then
SI = S∗, so the causal parents are fully identified (this result
assumes faithfulness).5

Proposition 13. Assume Setting 1. Let G be the DAG induced by
C∗ and assume that PC∗

(Y ,X,E) is faithful w.r.t. to G. If S∗ ⊆ ch(E),
where ch(E) denotes the children of E, we have SI = S∗.

A proof is given in Appendix E1.3. For simple model classes
such as linear Gaussian SCMs, sufficient conditions for faithful-
ness are known (Spirtes et al. 2000). In our setting, analyzing the
faithfulness assumption is particularly challenging due to non-
collapsibility and non-closure under marginalization of trams
(see Appendix A2). Nonetheless, we empirically show in our
simulations (see Appendix B3) that faithfulness is not violated,
for example, if the coefficients in linear shift trams are sampled
from a continuous distribution.

3.1. Testing for Invariance

We now translate (FZ ,HY ,X )-invariance into testable condi-
tions which are applicable to general trams and thus general

5Strictly speaking, assuming faithfulness for the whole graph when proving
Proposition 13 is too strong. As can be seen from the proof, it suffices to
assume that for all S ⊆ [d], we have E is not d-separated from Y given XS

implies E is not independent of Y given XS .
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response types. Here, we propose an invariance condition based
on score residuals (Definition 6). The following proposition
shows that the score residuals are uncorrelated with the envi-
ronments (in Setting 1) when conditioning on an invariant set.

Proposition 14 (Score-residual-invariance). Assume Setting 1
and that (8) in Appendix E2 holds. Then, we have the following
implication:

S is (FZ ,HY ,X )-invariant �⇒ E[R(hS; Y , XS) | XS] = 0, and
E[cov[E, R(hS; Y , XS) | XS]] = 0,

(3)

where E[cov[E, R(hS; Y , Xs) | XS]] := E[ER(hS; Y , XS) | XS] −
E[E | XS]E[R(hS; Y , XS) | XS] denotes the expected conditional
covariance between the residuals and environments.

A proof is given in Appendix E1.4. In Appendix A6, we
extend tramicp (in particular, Proposition 14) to uninforma-
tively censored observations, where Y itself is unobserved.

We now turn to the problem of testing invariance from finite
data. Section 3.1.1 develops a test, based on similar ideas as
the Generalised Covariance Measure (GCM, Shah and Peters
2020), on how to test the implication in (3). As a second,
alternative, invariance test, we also propose a Wald test for the
existence of main and interaction terms involving the environ-
ments in Appendix A1; we show in Proposition 16 that for linear
shift trams, such a test is closely related to the implication in
Proposition 14.

For all S ⊆ [d], and sample sizes n, let pS,n : (R × X S ×
E)n → [0, 1] be the p-value for the null hypothesis that S is
(FZ ,HY ,X )-invariant. All proposed invariance tests are embed-
ded in a subset-search over the set of covariates, in which we
return the intersection of all non-rejected sets at a given level
α ∈ (0, 1) (ICP; Algorithm 1).

Algorithm 1 Invariant causal prediction (Peters, Bühlmann, and
Meinshausen 2016)
Require: Data Dn from Setting 1, significance level α ∈ (0, 1),

and a family of invariance tests (pS,n)S⊆{1,...,d} (outputting a
p-value; see Algorithms 2, and A1 and the comparators in
Appendix B1)

1: For all S ⊆ [d], compute pS,n(Dn) � Compute p-value of
invariance test

2: return Sn := ⋂
S:pS,n(Dn)>α S � Intersection over all

non-rejected sets

It directly follows from Proposition 12 that if the tests are
level α, then the output of Algorithm 1 is contained in the
causal parents with large probability (see Peters, Bühlmann, and
Meinshausen 2016, Theorem 1), that is, P(Sn ⊆ paC∗(Y)) ≥
1 − α.6 This coverage guarantee does not require faithfulness or
sufficiently heterogeneous environments as assumed in Propo-
sition 13.7 It only requires that the environment is a measurable
function of non-descendants of Y and is not a causal parent

6The coverage guarantee holds by P(Sn ⊆ paC∗ (Y)) ≥ P(pS∗ ,n(Dn) > α) =
1 − α.

7If the test had perfect power, then under the conditions assumed in Propo-
sition 13, the procedure would output S∗. In practice, even under the

Algorithm 2 tram-GCM invariance test
Require: Data Dn from Setting 1, S ⊆ [d], estimator μ̂ for

μ(XS) := E[E | XS].
1: Fit the tram: ĥ ← arg maxh∈HY ,X S �(h;Dn)

2: Obtain μ̂ using data Dn
3: Compute residual product terms: Li ← R(̂h; yi, xS

i ){ei −
μ̂(xS

i )}, i = 1, . . . , n
4: Compute residual covariance: 
̂ ← n−1 ∑n

i=1 LiL

i −(

n−1 ∑n
i=1 Li

) (
n−1 ∑n

i=1 Li
)


5: Compute test statistic: Tn ← 
̂−1/2 (
n−1/2 ∑n

i=1 Li
)

6: Compute p-value: pS,n(Dn) ← 1 − Fχ2
q
(‖Tn‖2

2)

7: return pS,n(Dn)

of Y . Assuming the induced distribution is faithful w.r.t. the
induced graph and oracle tests for (FZ ,HY ,X )-invariance, the
coverage guarantee even holds if E is a causal parent of Y (this,
in particular, includes cases of linear shift trams in which E only
interacts with XS∗ to cause Y , that is, effect modification). In
this case, there exists no S ∈ [d] that is (FZ ,HY ,X )-invariant
and tramicp returns the empty set with high probability (see
Proposition 20 in Appendix A5).

We refer to the combination of ICP (Algorithm 1) with the
proposed tram-GCM invariance test (Algorithm 2) as tram-
icp-GCM, with the proposed tram-Wald invariance test (Algo-
rithm A1) as tramicp-Wald and using a nonparametric condi-
tional independence test (see Appendix B1) as nonparametric
ICP.

3.1.1. Invariance Tests based on Score Residuals
We can test the null hypothesis of (FZ ,HY ,X )-invariance by
testing the implication in (3), that is uncorrelatedness between
score residuals and residualized environments in a GCM-type
invariance test (Algorithm 2). This requires that the maximum
likelihood estimator exists and is unique.

Assumption 3. Under Setting 1 and for all S ⊆ [d], the maximum
likelihood estimator, given by arg maxh∈HY ,X S �(h;Dn), exists
and is unique.

See also the regularity conditions in McLain and Ghosh
(2013, Assumptions I–V). Theorem 15 shows that the proposed
test is uniformly asymptotically level α for any α ∈ (0, 1).

Theorem 15 (Uniform asymptotic level of the invariance test in
Algorithm 2). Assume Setting 1 and Assumption 3 and for a
fixed S ⊆ [d] let P := {P(Y ,XS,E) | S is (FZ ,HY ,X )-invariant}
denote the set of null distributions for the hypothesis H0(S) : S is
(FZ ,HY ,X )-invariant (Definition 11). For all P in P , we denote
by hP the hS ∈ HY ,X S in the definition of (FZ,HY ,X )-invariance
and μ(XS) := EP[E | XS]. Let ξ := E − μ(XS). Assume that

(a) infP∈P λmin(EP[R(hP; Y , XS)2ξξ
]) > 0,

conditions assumed in Proposition 13, we may not correctly reject all non-
invariant sets, but the coverage guarantee still holds. In this sense, the
method adapts automatically to settings, in which the heterogeneity is
sufficiently strong.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 9

(b) There exists δ > 0, s.t. supP∈P EP[‖R(hP; Y , XS)ξ‖2+δ
2 ] <

∞,
(c) supP∈P max

{
EP[‖ξ‖2

2 | XS],EP[R(hP; Y , XS)2 | XS]} <

∞.

Further, we require the following rate conditions on M :=
n−1 ∑n

i=1‖μ̂(XS
i )−μ(XS

i )‖2
2 and W := n−1 ∑n

i=1{R(̂h; Yi, XS
i )−

R(hP; Yi, XS
i )}2:

(i) M = oP (1),
(ii) W = oP (1),
(iii) MW = oP (n−1).

Then Tn converges to a standard q-variate normal distribution
uniformly over P . As a consequence, for all α ∈ (0, 1),

lim
n→∞ sup

P∈P
PP(pS,n(Dn) ≤ α) = α,

where pS,n(Dn) is the p-value computed by Algorithm 2.

A proof is given in Appendix E1.5. Conditions (a)–(c) are
mild regularity conditions on the distributions of (Y , XS, E). Of
the remaining conditions it is usually (iii) that is the strictest.
In the case of a parametric linear shift tram, we would expect
W = OP (n−1) and therefore would only need the regression of
E on XS to be consistent. However, the tram-GCM invariance
test can still be correctly calibrated even if the score residuals are
learned at a slower-than-parametric rate. Slower rates occur, for
instance, in mixed-effects (Tamási and Hothorn 2021), penal-
ized linear shift (Kook and Hothorn 2021), or conditional trams
(Hothorn, Kneib, and Bühlmann 2014).

In Appendix B3, we demonstrate in a simulation study that
tramicp-GCM and tramicp-Wald are level at the nominal α

and have nontrivial power (at least as high as nonparametric
ICP) against the considered alternatives in several model classes
including binary logistic, Weibull and Cox regression. However,
the tram-Wald invariance test hinges critically on correct model
specification. Despite its high power in the simulation study
(Appendix B3), the tram-Wald invariance test has size greater
than its nominal level under slight model misspecification (for
instance, presence of a nonlinear effect, see Appendix B6). The
tram-GCM test, however, directly extends to more flexible shift
trams which can incorporate the non-linearity, comes with
theoretical guarantees, and does not lead to anti-conservative
behavior under the null when testing invariance. The robustness
property of the tram-GCM invariance test does not neces-
sarily hold without residualization of the environments (Cher-
nozhukov et al. 2017; Shah and Peters 2020). We illustrate empir-
ically how also the naive correlation test may not be level, in case
of shift and penalized linear shift trams, in Appendix B6.

3.2. Practical Aspects

Plausible Causal Predictors. The procedure in Algorithm 1 can
be used to compute p-values for all S ∈ {1, . . . , d}. Based
on Peters, Bühlmann, and Meinshausen (2016) and as imple-
mented in InvariantCausalPrediction (Meinshausen 2019), we
can transform the set-specific p-values into predictor-specific p-
values: For all j ∈ [d], p̂j := 1 if maxS⊆[d] pS,n(Dn) < α and
p̂j := maxS⊆[d]:j �∈S pS,n(Dn) otherwise. Now, for j ∈ [d], p̂j is

a valid p-value for the null hypothesis H0(j) : Xj /∈ pa(Y)

(assuming that the true parents satisfy (FZ ,HY ,X )-invariance).
We then refer to Xj with p̂j ≤ α, j ∈ [d] as plausible causal
predictors.

Unmeasured Confounding. In Setting 1, we assume that all
confounding variables between covariates and response and all
parents of the response have been measured. This assumption
can be weakened by instead assuming that there exists a subset of
observed ancestors A ⊆ an(Y), such that E ⊥⊥G∗ Y | XA (where
⊥⊥G∗ denotes d-separation in G∗) and the model for Y given XA

is correctly specified by a tram. Such transformation models
can be constructed in special cases (Wienke 2010; Barbanti and
Hothorn 2019), but a characterization of this assumption is, to
the best of our knowledge, an open problem. As in ICP in the
presence of hidden confounders (Peters, Bühlmann, and Mein-
shausen 2016, Proposition 5), tramicp, under this assumption,
returns a subset of the ancestors of Y with large probability.

Nonparametric Extension. If the assumption that the response
given its parents is correctly specified by a tram is violated,
we can still apply nonparametric approaches to estimate the
conditional CDF of Y given XS, S ∈ [d]. Appendix B7 shows
empirically that the tram-GCM test based on score residuals
obtained via survival random forests (Ishwaran et al. 2008) is
level in a data-generating process with right-censored responses
where nonparametric ICP, ignoring the censoring, is not. We
leave a theoretical extension of our results for shift trams to the
nonparametric case for future work.

4. Causal Drivers of Survival in Critically Ill Adults

We apply tramicp to the SUPPORT2 dataset (Knaus et al. 1995)
with time-to-death in a population of critically ill hospitalized
adults being the response variable. SUPPORT2 contains data
from 9105 patients of whom 68.1% died after a maximum
follow-up of 5.55 years and the remaining 31.9% of observa-
tions were right-censored due to loss of follow-up. We consider
the following predictors measured at baseline (determined at
most three days after hospital admission): Sex (male/female),
race (white, black, asian, hispanic, other), number of comor-
bidities (0–9; num.co), coma score (0–100, scoma), cancer
(no cancer, cancer, metastatic cancer; ca), age (years), diabetes
(yes/no), dementia (yes/no), disease group (nine groups, includ-
ing colon and lung cancer; dzgroup).8 For our analysis, we
treat num.co (0, 1, . . . , 5, 6 or more) and scoma (11 levels)
as factors, square-root transform age and omit 43 patients with
missing values in any of the predictors listed above. We apply
tramicp using both tram-GCM and tram-Wald. For tram-
Wald, we only test the presence of main effects of the envi-
ronments (without additional first-order interaction effects) due
to non-convergence when fitting the models with interaction
effects.

8ca is not a deterministic function of dzgroup.



10 L. KOOK ET AL.

Table 1. TRAMICP applied to the SUPPORT2 dataset in the different settings described in Section 4.

Invariance test Predictor-specific p-values Environment

scoma dzgroup ca age diabetes dementia sex race

Evidence of age and cancer being direct causes of time-to-death
TRAM-GCM 0.239 0.239 0.000 0.003 0.157 0.176 0.162 0.220

num.co
TRAM-Wald 0.127 0.127 0.000 0.001 0.080 0.077 0.089 0.127

Incorporating prior knowledge about direct causes
TRAM-GCM 0.273 0.273 0.000 – – – 0.163 0.216

num.co
TRAM-Wald 0.127 0.127 0.000 – – – 0.089 0.127

NOTE: Predictor-specific p-values (see Section 3.2) are reported for the TRAM-GCM and TRAM-Wald invariant test, together with the environment variable used. p-values in
bold are significant at the 5% level; in each row, the set of predictors with bold numbers corresponds to the output of TRAMICP.

4.1. Choice of Environments

When applying oracle tests and assuming faithfulness, tram-
icp maintains the coverage guarantee as long as the environ-
ment variables are non-descendant of the response (Peters,
Bühlmann, and Meinshausen 2016, sec. 3.3). In our study, all
measured predictors precede the response chronologically, so,
if all model assumptions are satisfied and faithfulness holds, all
choices of environments come with the correct coverage but
may differ in power. We choose num.co as the environment
as, we believe, it is associated with several other predictors and
subsequently creates enough heterogeneity. In addition, because
num.co is constructed from the presence/absence of other
(recorded and unrecorded) comorbidities, it is a sink node in the
corresponding graph. If an unrecorded comorbidity ornum.co
were to directly cause (time to) death, the population output of
tramicp(assuming faithfulness) would be empty since the path
from num.co to (time to) death cannot be blocked without
conditioning on the presence/absence of this comorbidity itself.
In Appendix C2, we apply tramicp when additionally using
race as an environment. (For a single choice of a valid environ-
ment, no multiple testing correction is needed; however, when
applying tramicp to several choices of environments, in order
to obtain a family-wise coverage guarantee, one would need to
apply a multiple testing correction, such as Bonferroni with the
number of choices of environments.)

4.2. Results

The Set of All Predictors is Not Invariant. In the model includ-
ing all predictors the standard Wald test rejects the null hypoth-
esis of no effect for all predictors except race. A Wald test for
the main effect of num.co yields a p-value < 0.0001. This
provides strong evidence that the purely predictive model using
all predictors is not invariant across num.co and thus uses a set
of features that is different from the set of causal parents.

Evidence of Age and Cancer Being Direct Causes of Time-to-
Death. We now apply tramicp-GCM and tramicp-Wald to
the SUPPORT2 dataset specifying the survival time as the
response in a Cox proportional hazard model, using num.co
as the environment and including all other predictors. Both
algorithms output ca and age as plausible causal predictors
(i.e., the intersection of all sets for which the invariance test was
not rejected equals {ca,age}). This can be seen in Figure C1
in Appendix C1, where all non-rejected sets include both ca
and age. The predictor-specific p-values (see Section 3.2) are

given in Table 1 (“Evidence of age and cancer being direct causes
of time-to-death”). In their original analysis of the SUPPORT2
dataset, Knaus et al. (1995) have assumed that the censoring is
uninformative. In a sensitivity analysis in Appendix C3, we show
that while tramicp is somewhat robust when inducing (poten-
tially) additional informative censoring, it eventually returns the
empty set.

Incorporating Prior Knowledge About Direct Causes. If a set of
predictors is known to cause the outcome, this set can always
be included in the conditioning set (which reduces computa-
tional complexity, because fewer invariance tests have to be per-
formed). We illustrate this by including age, dementia, and
diabetes as “mandatory” covariates when running tramicp
(see Appendix D). In this case, both tramicp-GCM and tram-
icp-Wald still output ca as a causal predictor of survival. The
predictor p-values are given in Table 1 (“Incorporating prior
knowledge about direct causes”).

5. Discussion

In this article, we generalize invariant causal prediction to trans-
formation models, which encompass many classical regression
models and different types of responses including categorical
and discrete variables. We show that, despite most of these mod-
els being neither closed under marginalization nor collapsible,
tramicp retains the same theoretical guarantees in terms of
identifying a subset the causal parents of a response with high
probability. We generalize the notion of invariance to discrete
and categorical responses by considering score residuals which
are uncorrelated with the environment under the null hypoth-
esis. Since score residuals remain well-defined for categorical
responses, our proposal is one way to phrase invariance in
classification settings.

We have applied tramicp to roughly ten real world datasets
(which technically would require a multiple testing correction),
and have often observed that, depending on the choice of envi-
ronment, either no subset of covariates is invariant (i.e., all
invariance tests are rejected) or all subsets of covariates are
invariant. In both cases, tramicp outputs the empty set—an
output that is not incorrect but uninformative.

Supplementary Materials

The online supplement contains a pdf file with Appendices A to E and
another pdf file with information on how to reproduce the results in the
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paper. The code for reproducing the results can be found at https://github.
com/LucasKook/tramicp.git.
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