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Abstract
In many medical applications, interpretable models with high prediction perfor-
mance are sought. Often, those models are required to handle semistructured
data like tabular and image data. We show how to apply deep transforma-
tion models (DTMs) for distributional regression that fulfill these requirements.
DTMs allow the data analyst to specify (deep) neural networks for different input
modalities making them applicable to various research questions. Like statis-
tical models, DTMs can provide interpretable effect estimates while achieving
the state-of-the-art prediction performance of deep neural networks. In addi-
tion, the construction of ensembles of DTMs that retain model structure and
interpretability allows quantifying epistemic and aleatoric uncertainty. In this
study, we compare several DTMs, including baseline-adjusted models, trained
on a semistructured data set of 407 stroke patients with the aim to predict ordi-
nal functional outcome threemonths after stroke.We follow statistical principles
of model-building to achieve an adequate trade-off between interpretability and
flexibility while assessing the relative importance of the involved data modal-
ities. We evaluate the models for an ordinal and dichotomized version of the
outcome as used in clinical practice. We show that both tabular clinical and
brain imaging data are useful for functional outcome prediction, whereasmodels
based on tabular data only outperform those based on imaging data only. There
is no substantial evidence for improved prediction when combining both data
modalities. Overall, we highlight that DTMs provide a powerful, interpretable
approach to analyzing semistructured data and that they have the potential to
support clinical decision-making.
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1 INTRODUCTION

Although prevention, diagnosis, and treatment of stroke have improved largely, it remains one of the leading causes of
long-term disability and death worldwide (Benjamine et al., 2019). Each year, approximately 15 million people experience
a stroke, 40% die, and 30% suffer lasting functional disability. To achieve the best possible outcome, patients have to be
treated as fast as possible and decisions for or against different treatment options have to be made under immense time
pressure. For clinical studies, the patient’s functional outcome 3months after hospital admission is primarily used to assess
treatment success. Functional outcome is quantified on the modified Rankin Scale (mRS), an ordinal score comprising
seven levels ranging between no symptoms at all (mRS of 0) and death (mRS of 6, Quinn et al., 2009). Often, neurologists
are not directly interested in predicting the exact class of the mRS but rather in stratifying the chances of a patient having
a favorable (mRS of 0–2) versus unfavorable (mRS of 3–6) functional outcome (Weisscher et al., 2008).
Semistructured data comprise the basis for various decisions in medicine (e.g., in stroke and cancer, Ebisu et al., 1997;

Jafari et al., 2018). For instance, when predicting functional outcome in stroke patients, unstructured data such as brain
images resulting from computed tomography (CT) or magnetic resonance imaging (MRI) are as important as structured
data, such as tabular patient and clinical characteristics (Copen et al., 2011). Different brain imaging modalities provide
insight into the extent of tissue injury, the exact location of the stroke lesion, as well as previous brain infarcts. While
in clinical practice, information from brain imaging is frequently used for difficult clinical decisions, functional outcome
prediction is limited with current image analysis strategies (see Section 1.1). It is currently an open question to what extent
the imaging data and tabular data help in reliably predicting functional outcome. In a previous study, Hamann et al. (2021)
found no additional benefit for stroke outcome prediction when adding expert-derived image features alongside clinical
features. Trustworthy models for outcome prediction relying on data of both modalities are lacking but of high interest to
the neurologist to assess the vast amount of complex medical data under immense time pressure.
Recently, machine learning (ML) and deep learning (DL) models, in particular, have proven outstanding prediction

results on unstructured data like images. The models are fast, precise, and reproducible when it comes to analyze the
large amount of data appearing in daily clinical practice (e.g., Campanella et al., 2019). Nonetheless, there is often distrust
in ML-derived predictions, which is mainly due to their “black-box” character (Rudin, 2019). Questions like “How does
the model come to its prediction?,” “How certain is the model about the prediction?,” or “What is the impact of different
patient features on the prediction” have to be answered, in order for medical experts to trust the model. Therefore, ML
models should not only focus on achieving the most accurate predictions but also on interpretability and uncertainty, that
is, the models should be tailored to provide a distributional outcome prediction instead of a point prediction.
We present deep transformationmodels (DTMs) to analyze semistructured data. DTMs unite classical statistical models

with (deep) neural networks, provide distributional outcome predictions, and achieve interpretable model parameters
without sacrificing the high prediction performance of DL models. We demonstrate the use of DTMs on data of patients
admitted to the hospital due to stroke symptoms. In particular, we present models for predicting a patient’s functional
outcome measured by the ordinal mRS 3 months after hospital admission that rely on tabular data, brain imaging, or
a combination of both. We apply DTMs on a semistructured data set of 407 stroke patients to model the conditional
distribution of a patient’s functional outcome 3 months after hospital admission. We describe briefly how DTMs can be
used to model continuous or censored outcomes, like time-to-event data, which makes them applicable to many different
research questions. We discuss how DTMs yield interpretable effect estimates of the different input modalities and how
the model arrives at its predictions. Moreover, we highlight baseline-adjusted DTMs conditioning on a patient’s prestroke
mRS, which is expected to be strongly predictive of outcome. Baseline-adjusted DTMs for un- and semistructured data
are novel and of high interest to data analysts working in medical research, in which integrating baseline variables for
outcome prediction is a common requirement.

1.1 Related work

In the following, we describe work related to semistructured distributional regression approaches as DTMs.

1.1.1 Classical regression models

Classical regression models like logistic regression or Cox proportional hazard models are the standard when analyzing
structured data (e.g., tabular features) in medical applications. They are considered highly trustworthy because they are
transparent, interpretable, and provide uncertainty measures (e.g., Steyerberg, 2019). However, unstructured data like
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HERZOG et al. 3

images or text cannot directly be analyzed with suchmodels. First, tabular features have to be extracted from the unstruc-
tured data to be subsequently analyzed in a regressionmodel—potentially together with other tabular data (e.g., Thiran &
Macq, 1996). Yet, this feature engineering step is disconnected from optimizing the model parameters and necessarily dis-
cards information, which makes it difficult to know if the engineered features reflect relevant information in the original
data well enough.

1.1.2 Deep neural networks

(Deep) neural networks (DNNs), on the other hand, learn relevant features for a task at hand as a part of the model-fitting
process and therefore omit the feature engineering step,whereas they can be trained on structured data, unstructured data,
or a combination of both (Goodfellow et al., 2016). For instance, previous work has focused on analyzing combinations
of image and tabular data to predict stroke patient outcomes with DNNs. Pinto et al. (2018) used a model consisting of
a convolutional neural network (CNN) for the image data where they attach tabular data to the feature vector in the
dense part of the CNN. This enables interactions between image and tabular data. Another pilot study for stroke outcome
prediction used a combination of a CNN and a dense NN for integrating image and tabular data into one model (Bacchi
et al., 2020). However, like the majority of the DNNs, the existing approaches are black box models that do not quantify
uncertainty. They lack interpretable model parameters and estimate point predictions like the conditional mean rather
than a conditional outcome distribution.

1.1.3 Distributional regression

Distributional regression focuses on estimating an entire conditional distribution rather than the first conditional
moment(s) (Kneib et al., 2021). Therefore, when fitted by empirically optimizing a proper score like the negative log like-
lihood, a distributional regression model directly quantifies aleatoric uncertainty inherent in the data. To achieve a well
fitting distributional regression model, a complex conditional outcome distribution might be required. Generalized lin-
ear models (GLMs) are based on members of the exponential family, defined by the first two moments, for modeling
the conditional outcome distribution, whereas they provide interpretable model parameters. Generalized additive mod-
els for location, scale, and shape (GAMLSS) extend GLMs by allowing to specify all parameters of the assumed outcome
(Stasinopoulos & Rigby, 2007). A GAMLSS implementation with flexible specification of the conditional moments of
ℙ𝑌|𝑿=𝒙 using DNNs is, for example, presented in Rügamer et al. (2020). However, these models still require the choice of
a parametric family of conditional outcome distributions.

1.1.4 Transformation models for distributional regression

Transformation models (TMs) are a more recent method for distributional regression, which do not require to prespecify
the family of the outcome distribution (Hothorn et al., 2014, 2018). In TMs, the conditional outcome distribution is decom-
posed into a simple, parameter free, target distribution 𝐹𝑍 (e.g., normal or logistic), and a conditional transformation
function ℎ(𝑦|𝒙), such that 𝐹𝑌|𝑿=𝒙(𝑦) = 𝐹𝑍(ℎ(𝑦|𝒙)). More details are given in Section 2. Independent of TMs, normalizing
flows were developed in the DL community (Rezende & Mohamed, 2015), which are based on the same idea as TMs. But
while normalizing flows solely aim at predicting a flexible (conditional) distribution and constructing the transformation
function as a chain of simple transformations, TMs are tailored for interpretable distributional regression models. The
construction of the transformation function and the choice of the simple distribution 𝐹𝑍 give rise to extremely flexible
TMs for conditional distributions. For instance, Sick et al. (2021) and Baumann et al. (2021) use 𝐹𝑍 = Φ and predict dif-
ferent outcome distributions with variously flexible transformation functions on commonly used benchmark data sets
in DL and demonstrate state-of-the-art prediction performances. Rügamer et al. (2021) use DTMs for time series data by
including autoregressive components in the transformation function.

1.1.5 (Deep) transformation models for ordinal outcomes

Themain application of this article features an ordinal outcome (mRS). Models for the conditional distribution of an ordi-
nal outcome given covariates like the proportional odds logistic regressionmodel have been studied in statistics for several
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4 HERZOG et al.

F IGURE 1 TMs for continuous (a) or ordinal categorical outcome (b). The lower right part of each panel shows the conditional density
of 𝑌 given 𝒙, which is mapped onto the density of the latent variable 𝑍 (see upper left part in each panel). The transformation is done via a
monotone transformation function ℎ (upper right part). This transformation function can be continuous (a) or discrete (b).

decades (McCullagh, 1980). Baseline-adjusted proportional odds models have been described from a TM perspective in
Buri et al. (2020). However, only recently a special DTM, focusing on ordinal neural network TMs (ontrams), has been
developed in DL and applied to several publicly available (nonmedical) data sets (Kook & Herzog et al., 2022b). However,
DTMs were not yet applied in the context of stroke.

1.1.6 Transformation ensembles

Ensembling in terms of aggregating the predictions of multiple models to improve prediction performance is commonly
seen in practical applications. In the field of DL, ensembling often means aggregating the predicted probabilities of a few
DNNs that possess the same architecture and are trained on the same data after random initialization (Lakshminarayanan
et al., 2017). These deep ensembles are not only used to achieve more accurate predictions but also to quantify epistemic
uncertainty by means of the variation of the different predictions. However, the special structure and the interpretabil-
ity of deep TMs are in general lost after aggregating them via deep ensembling. Kook et al. (2022a) recently developed
transformation ensembles that aggregate DTMs on the scale of the transformation function preserving structure and
interpretability (see Section 2).
This article is organized as follows. Section 2 presents detailed background on distributional regression models with

semistructured data and the experimental setup including model evaluation. Results are presented in Section 3. We end
with a discussion of the various types of questions that may be answered by deep distributional regression models like
DTMs in Section 4.

2 METHODS

In the following, we briefly introduce TMs that are used to integrate semistructured data,model highly flexible conditional
outcome distributions, and provide interpretable model parameters. Since our application features an ordinal outcome,
we will pay special attention to this case.

2.1 Distributional regression with transformation models

In TMs, the problem of estimating the potentially complex conditional outcome distribution of (𝑌|𝑿 = 𝒙) is approached
by learning a parameterized monotone transformation ℎ(𝑦|𝒙; 𝜽) that maps between the distributions of (𝑌|𝑿 = 𝒙) and
the latent variable𝑍. The distribution of the latent variable𝑍 (with log-concave density) has to be defined a priori. Usually,
a parameter-free distribution, such as the standard Gaussian or logistic distribution, is chosen (see Figure 1).
The parameters 𝜽 in ℎ(𝑦|𝒙; 𝜽) determine the functional form of the transformation function and thus the corresponding

conditional outcome distribution (we drop 𝜽 in the following to simplify notation). The parameters are fitted viamaximum
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HERZOG et al. 5

likelihood, that is, by minimizing the negative log-likelihood (NLL),

NLL = −
1

𝑛

𝑛∑
𝑖=1

𝓁𝑖(𝜽), (1)

where 𝓁𝑖 is the log-likelihood contribution of the 𝑖th training observation.
In case of a continuous outcome, the likelihood contribution of an exact observation (𝑦, 𝒙) is given by the value of

the conditional density at the observed outcome 𝑓𝑌|𝑿=𝒙(𝑦) that can be determined via 𝑓𝑍 and ℎ by using the change of
variables formula 𝑓𝑌|𝑿=𝒙(𝑦) = 𝑓𝑍(ℎ(𝑦|𝒙)) ⋅ ℎ′(𝑦|𝒙) . The transformation function ℎ is a smooth function (see Figure 1a)
that can be modeled via a basis expansion with basis functions 𝒂(⋅) , yielding 𝒂(𝑦)⊤𝜽 . A common choice for 𝒂(⋅) are
polynomials in Bernstein form 𝐚Bs,𝑃(⋅) of order 𝑃 . Here, the required monotonicity of ℎ can be easily guaranteed via
linear constraints on the parameters 𝜽 (Hothorn et al., 2018). Complex dependence on the input 𝒙 can be achieved by
controlling 𝜽(𝒙) via a deep NN.
If a continuous observation is censored, which often occurs in (but is not limited to) survival data, the outcome is mea-

sured as an interval 𝑦 ∈ (𝑦, �̄�] and the likelihood contribution can be derived from the cumulative distribution function,
as 𝐹𝑍(ℎ(�̄�|𝒙)) − 𝐹𝑍(ℎ(𝑦|𝒙)).
For an ordered categorical outcome, the discretemonotone increasing transformation functionℎmaps the observed out-

come classes 𝑦𝑘 to the conditional cut points ℎ(𝑦𝑘|𝒙), 𝑘 = 1,… , 𝐾 − 1 of the latent variable 𝑍 , as illustrated in Figure 1(b).
This allows to view the ordinal outcome as a result of an underlying continuous latent variable 𝑍 with interval-censored
observations. The likelihood contribution of an observation (𝑦𝑘, 𝒙) , given by the probability 𝑝𝑘 for the observed class 𝑦𝑘 ,
can correspondingly be determined by the area under 𝑓𝑍 between the cut points ℎ(𝑦𝑘|𝒙) and ℎ(𝑦𝑘−1|𝒙) and is computed
as 𝑝𝑘 = 𝐹𝑍(ℎ(𝑦𝑘|𝒙)) − 𝐹𝑍(ℎ(𝑦𝑘−1|𝒙)) . If dummy-encoding is used for 𝑦𝑘 , that is, the class 𝑘 is encoded by a vector 𝒂(𝑦)
of length 𝐾 that holds a one at position 𝑘 and zeros elsewhere, then ℎ is given by ℎ(𝑦𝑘|𝒙) = 𝒂(𝑦)⊤𝜽(𝒙) with 𝜽(𝒙) being
constrained to 𝜃1(𝒙) ≤ 𝜃2(𝒙) ≤ ⋯ ≤ 𝜃𝐾(𝒙) = +∞ .

2.1.1 Interpretability in transformation models

To achieve the same interpretability as in commonly used regression models, such as proportional hazard or proportional
odds models, the flexibility of ℎ needs to be restricted. This can be done by decomposing ℎ in a baseline transformation
(intercept function) ℎ0 that does not depend on the input data and one or several shift terms ℎ(𝑦|𝒙) = ℎ0(𝑦) − shift(𝒙).
In such a shift model, ℎ0 determines the shape of the transformation function ℎ and only the shift terms depend on
𝒙, moving ℎ up and down (see Figure 1). A particularly simple example is a linear shift model of some tabular input
data 𝑥𝑗, 𝑗 ∈ 1,… , 𝐽, which looks as follows for a continuous outcome ℎ(𝑦|𝒙) = ℎ0(𝑦) − 𝒙⊤𝜷. Depending on the chosen
distribution for 𝑍, the parameters 𝜷 have a straightforward interpretation. A summary of commonly used distributions
for 𝐹𝑍 and the corresponding interpretational scales is given in Siegfried and Hothorn (2020).
When choosing, for example, the minimum extreme value distribution for 𝑍, that is, 𝐹𝑍(𝑧) = 1 − exp(− exp(𝑧)), the

parameters 𝛽𝑗, 𝑗 = 1,… , 𝐽 can be interpreted as log hazard ratios. Awell-known example is the proportional hazardmodel
that is often used for survival analysis, where the bounded continuous outcome is a survival time. Survival analysis poses
additional challenges. For instance, usually, not all patients experience the event of interest during follow-up, leading to
(right-) censoring with 𝑦 ∈ (𝑦, +∞), which can be easily handled in TMs, as described above.

2.1.2 Semistructured regression

In semistructured regression, the problem is to combine both structured data, for example, tabular features𝒙, and unstruc-
tured data, for example, images 𝖡, in one single model. This can be realized with NNs, which take both structured and
unstructured data as input and control the parameters of ℎ (see Figure 2). Depending on the architecture of the NNs, more
or less flexible models can be described.
Themost flexiblemodel is achieved, if ℎ depends in complexmanner on all inputs corresponding to a complex intercept

model with

ℎ(𝑦|𝖡, 𝒙) = 𝒂(𝑦)⊤𝜽(𝖡, 𝒙), (2)
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6 HERZOG et al.

F IGURE 2 An SI-CS𝖡-LS𝒙 DTM with simple intercepts, not depending on the input, a linear shift term in the tabular input data 𝒙 and a
complex shift term in the images 𝖡. All additive components of ℎ are controlled by NNs, that is, shallow dense NNs without hidden layer for
SI and LS𝒙 and a three-dimensional CNN for CS𝖡, which are jointly fitted by minimizing the NLL via stochastic gradient decent.

where an NN controls 𝜽(⋅) depending on imaging data (𝖡) and tabular data (𝒙) and thus potentially allowing for inter-
actions between 𝖡 and 𝒙. Without restricting 𝜽(⋅) in any way besides being monotone increasing, maximal flexibility is
achieved. Most often in biostatistics, a shift model is assumed for ℎ (i.e., a proportionality assumption is made) and no
interactions between the input data are allowed. In this scenario, the model simplifies to

ℎ(𝑦|𝖡, 𝒙) = 𝒂(𝑦)⊤𝜽 − 𝜂(𝖡) − 𝛽(𝒙), (3)

where 𝛽 and 𝜂 are controlled by two separate NNs and are interpretable, for example, as log odds ratios if the logistic
distribution 𝐹𝑍(𝑧) = expit(𝑧) =

1

1+exp(−𝑧)
is chosen. If a linear effect is assumed for each tabular feature, and the effect of

each feature should be interpretable as log odds ratio, then further simplifications have to be made by using a linear shift
term for the tabular data

ℎ(𝑦|𝖡, 𝒙) = 𝒂(𝑦)⊤𝜽 − 𝜂(𝖡) − 𝒙⊤𝜷. (4)

Such a model with simple intercept (SI) 𝒂(𝑦)⊤𝜽, linear shift 𝒙⊤𝜷, and complex shift 𝜂(𝖡) term is depicted in Figure 2 and
referred to as SI-CS𝖡-LS𝒙 in this work.
In general, the primary goal is to develop a model with adequate prediction performance. Usually, simpler (i.e., fewer

parameter) and more interpretable models are preferred over black boxes. Only if the more complex model yields a sub-
stantial improvement in terms of prediction performance, the more complex model should be preferred. We investigate
the ramifications of model selection in Section 3.

2.1.3 Transformation ensembles

We construct transformation ensembles of DTMs that are fitted on the same data but with different random initializa-
tion. Transformation ensembles average the predicted transformation functions of the DTMs, which preserves the model
structure and interpretability, improves prediction performance, and allows to quantify epistemic uncertainty (Kook et al.,
2022a).
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HERZOG et al. 7

F IGURE 3 A pseudo-3D diffusion-weighted image of an example stroke patient. 2D slices where a stroke lesion is visible are labeled
with a 1 and 0 otherwise. Each patient is represented by 28 diffusion-weighted images (DWIs) after preprocessing. Ischemic stroke lesions
appear as hyperintense signal on one or multiple images of a sequence.

2.2 Data

Our cohort consists of 407 patients who are either diagnosed with ischemic stroke (295 patients) or transient ischemic
attack (TIA, 112 patients). As opposed to stroke, TIA causes only temporary stroke symptoms and no permanent brain
damage. The cohort was collected retrospectively. All patients were admitted to the University Hospital of Zurich between
2014 and 2018 and had MRI records in the acute phase. Ethical approval for the study was obtained from the Cantonal
Ethics Committee Zurich (KEK-ZH-No. 2014-0304).
In this study, we use the stroke patient’s brain imaging and tabular baseline data for functional outcome prediction.

Diffusion-weighted images (DWIs) represent brain pathology in a 3Dmanner as ordered sequences of multiple 2D images
per patient. On DWIs, stroke lesions appear as hyperintense signals, typically on multiple, subsequent images in the
sequence (see Figure 3). They give valuable insight into stroke location and severity. TIA patients show no visible lesion
on DWIs. All collected DWIs were recorded within 3 days after hospital admission. After preprocessing, each 3D image
is of dimension 128 × 128 × 28 with zero mean and unit variance (see Figure 3). We consider baseline covariates, that is,
patient characteristics including age and sex, risk factors including hypertension, prior stroke, smoking, atrial fibrillation,
coronary heart disease (CHD), prior TIA, diabetes, and hypercholesterolemia, the National Institutes of Health Stroke
Scale at baseline (NIHSS at BL) highlighting stroke symptom severity as an ordinal sum score with 42 levels, and the pre-
stroke mRS (mRS at BL) informing about the patient’s functional disability before stroke. All factor variables are dummy
encoded and all other tabular features are standardized to make the magnitude of estimated parameters comparable.
The outcome of interest is the ordinal mRS, which consists of seven levels: 0 = no symptoms at all, 1 = no significant

disability despite symptoms, 2 = slight disability, 3 = moderate disability, 4 = moderately severe disability, 5 = severe
disability, 6 = death (Grotta et al., 2016). In our cohort of 407 patients, we observed the following 𝑛𝑘, 𝑘 = 1,… , 𝐾 for the
𝐾 = 7 outcome classes: 𝑛0 = 184 (45.2%), 𝑛1 = 88 (21.6%), 𝑛2 = 60 (14.7%), 𝑛3 = 25 (6.1%), 𝑛4 = 20 (4.9%), 𝑛5 = 5 (1.2%),
𝑛6 = 25 (6.1%). Figure B.1 in the Appendix shows the distribution of predictors stratified by the outcome among all 407
patients. Since in clinical practice, the neurologists are often primarily interested in the patient’s chance for a favorable
(mRS≤ 2,𝑛𝑓 = 332, 81.6%) versus unfavorable (mRS> 2,𝑛𝑢 = 75, 18.4%) outcome (Weisscher et al., 2008), we additionally
considered the binary mRS.

2.3 Experimental setup

2.3.1 Models

We compare models with varying degrees of interpretability and flexibility for ordinal mRS prediction (see Table 1). The
goal is to obtain a model that achieves the highest possible prediction power while being adequately interpretable. In all

 15214036, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202100379 by U
niversitätsbibliothek Z

uerich, W
iley O

nline L
ibrary on [07/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 HERZOG et al.

TABLE 1 Summary of all models used for binary and ordinal functional outcome prediction in the stroke data. If applicable, the
transformation function is given. The model names are combinations of the components (simple/complex intercept/shift), the subscript
indicates which modality enters which component, where, for example, LS𝒙 indicates that the tabular data are the input. SI, simple intercept;
CI, complex intercept; LS, linear shift; CS, complex shift. Note that LS𝒙 includes all predictors, including prestroke mRS, whereas LSmRS

contains prestroke mRS only.

Outcome Input data Model name Transformation function
Binary mRS Images only CI𝖡-Binary 𝜃(𝖡)

Ordinal mRS None SI 𝜃𝑘

Tabular only SI-LS𝒙 𝜃𝑘 − 𝒙⊤𝜷

Tabular only SI-CSage-LS�̃� 𝜃𝑘 − 𝛾(𝒙age) − 𝒙⊤
−age𝜷

Images only SI-CS𝖡 𝜃𝑘 − 𝜂(𝖡)

Images + tabular SI-CS𝖡-LS𝒙 𝜃𝑘 − 𝜂(𝖡) − 𝒙⊤𝜷

Images + prestroke mRS CI𝖡-LSmRS 𝜃𝑘(𝖡) − 𝒙⊤
mRS𝜷

Images + tabular CI𝖡-LS𝒙 𝜃𝑘(𝖡) − 𝒙⊤𝜷

Tabular only GAM 𝜃𝑘 − 𝛾(age) − 𝒙⊤
−age𝜷

Images only CI𝖡

models, we choose 𝐹𝑍(𝑧) = expit(𝑧), such that shift parameters in ℎ can be interpreted as log odds ratios. By comparing
models based on tabular data, image data, and a combination of both, we assess if tabular and image data carry comple-
mentary information and which of the two contains more information for outcome prediction. As a baseline,we consider
performance metrics of an unconditional model, which takes no input data and hence consists of an SI only. This model
predicts the prevalence of each outcome class. To assess binary mRS prediction, we consider the outcome as censored
and sum up the predicted probabilities of the respective ordinal model. The probability for a favorable outcome is the
sum across the probabilities for classes 0–2, the probability for unfavorable outcome is the sum across the probabilities for
classes 3–6.
We define an image-only model that is fitted using the binary mRS (CI𝖡-Binary in Table 1). This dichotomized version

of the mRS can be viewed as a censored version of the ordinal mRS and can therefore be directly compared to all models
fitted on the ordinal scale (see Table 1). We fit the CI𝖡-Binary model primarily as a benchmark for the performance of the
models that are trained for the ordinal but evaluated for the binary mRS.
The most interpretable model for the ordinal mRS is a linear proportional odds model based on all tabular features.

It consists of an SI and a linear shift in 𝒙 (SI-LS𝒙). The SI-CSage-LS�̃� model allows the outcome to depend on age in a
nonlinear way by estimating a potentially complex and continuous log odds-ratio function 𝑥age.We additionally fit models
depending on image data only (SI-CS𝖡, CI𝖡) and on a combination of image and tabular data (SI-CS𝖡-LS𝒙 and CI𝖡-LS𝒙
models). Integrating the images as complex intercept (CI𝖡) rather than as complex shift term (CS𝖡) allows to increase
model complexity further. In the image model CI𝖡-LSmRS, we additionally adjust for the prestroke mRS to achieve a fairer
comparison between image-data-only and tabular-data-only.

2.3.2 Implementation

SI and linear shift terms for tabular features are modeled with fully connected NNs without hidden layers. A fully con-
nected NNwith multiple hidden layers is used to integrate age as complex shift term. The complex intercept and complex
shift terms for the images are modeled with a 3D CNN. In all models, the number of output nodes is equal to six (since
the mRS has seven levels) in NNs for intercept terms and equal to one in NNs for shift terms. The last layer activation is
always linear and no bias terms are used.
All models are trained byminimizing the negative log-likelihood (see Equation (1)) using the Adam optimizer (Kingma

& Ba, 2015) with a learning rate of 5 × 10−5 and a batch size of six. Augmentation of the image data is used to prevent
overfitting. In addition, we use early stopping, that is, we select the model weights from the epoch that shows the smallest
NLL on the validation data. More details on NN architectures, hyperparameters, augmentation procedure, and software
are given in Appendix A.
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HERZOG et al. 9

2.3.3 Training and evaluation

We randomly split the data six times into a train (80%), validation (10%), and test set (10%). This results in six fits for
eachmodel type (see Table 1) that allows us to assess the variation of the achieved test performance. For all models, which
include the image data as input, we perform transformation ensembling (Kook et al., 2022a). For that, we train fivemodels
on the same data in each split. CNNs controlling the image term in the model are initialized randomly. Additional SI and
LS𝒙 terms are initialized with the corresponding parameters of the SI-LS𝒙 model fitted on the same split. This results in
an ensemble model (constructed from five members) in each of the six splits for each model type.

2.3.4 Performance measures

All models are mainly evaluated with proper scoring rules (Gneiting & Raftery, 2007). The score we consider primarily
for model comparison is the test NLL (Good, 1952, a.k.a. log-score). We further assess the Brier score for the binary out-
come. For the ordinal functional outcome, we calculate the ranked probability score (RPS) as an additional proper score
(Bröcker & Smith, 2007). As measures of discriminatory ability, we compute area under the receiver operating charac-
teristic (ROC) curve (AUC) and accuracy for binary outcomes and quadratic weighted Cohen’s 𝜅 (QWK) for the ordinal
outcome (Steyerberg, 2019). We construct 95% bootstrap confidence intervals by taking 𝐵 = 1000 bootstrap samples of size
𝑛test of test predictions (e.g., NLL contributions) for each of the 𝑆 = 6 random splits of the data, by computing the 2.5th,
50th, and 97.5th percentile of the 𝐵 bootstrap metrics averaged over the 𝑆 splits.

3 RESULTS AND DISCUSSION

We first present results for predicting and discriminating binary and ordinalmRS. Then, we discuss how to interpret linear
and nonlinear model components.

3.1 Binary mRS prediction

The test performance and calibration plots of all models from Table 1 evaluated for the binary mRS are summarized in
Figure 4. We first compare models that only include the image modality and only differ in the number of classes (CI𝖡-
Binary trained with two vs. CI𝖡 trained with seven classes). The CI𝖡-Binary model shows a worse average performance
and a higher variability in predictions across the six random splits compared to the CI𝖡. This highlights the importance
for training with all available class levels rather than with a dichotomized version of the outcome—whenever possible.
The average performance of the CI𝖡-Binary is similar to that of the unconditional model (SI), indicating that the model
has primarily learned the class frequencies. Decreasing model complexity by modeling the image data with a complex
shift (SI-CS𝖡) rather than with a complex intercept (CI𝖡) leads to a comparable performance. Both models, SI-CS𝖡 and
CI𝖡, achieve a better average prediction performance than the unconditional model (SI), indicating that the image data
contain information for mRS binary prediction.
The most interpretable model based on tabular features only (SI-LS𝒙) shows a better prediction performance than all

models based on image data only (CI𝖡, CI𝖡-Binary, SI-CS𝖡) in terms of NLL and Brier Score. Like the models based on
image data only, the SI-LS𝒙 outperforms the unconditionalmodel (SI, Figure 4). This indicates that not only image but also
tabular data are useful for binarymRS prediction. For a fairer comparison of image-data-only versus tabular-data-only, we
adjust for prestroke mRS in the most flexible image model. In this comparison, the baseline-adjusted model (CI𝖡-LSmRS)
shows a performance similar to the unadjusted model (CI𝖡).
The semistructured models incorporating both image and tabular data (CI𝖡-LS𝒙and SI-CS𝖡-LS𝒙) achieve a similar or

slightly better average performance than the model including tabular data only (SI-LS𝒙, see Figure 4). CI𝖡-LS𝒙 does not
assume proportional odds for the image modality and outperforms SI-CS𝖡-LS𝒙on some splits. The latter assumes pro-
portional odds for both tabular and image data. Overall, there is no convincing evidence that combining tabular and
imaging data in a CI𝖡-LS𝒙 model improves binary mRS prediction. The added image information increases variability in
prediction performance.
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10 HERZOG et al.

F IGURE 4 Test error (a) and calibration plots (b) of transformation ensembles (blue) and reference models (gray) evaluated for the
binary mRS outcome (mRS 0–2 vs. mRS 3–6). In (a), the test performance is quantified in terms of negative log-likelihood (NLL), Brier score,
discrimination error (1 − AUC), and classification error (1 − ACC). From the test performance in the six random splits (indicated by different
symbols), we consider the average test error and 95% bootstrap (𝐵 = 1000) confidence intervals. For the calibration plots in (b), the predicted
probabilities are split at the 0.25, 0.5, and 0.75 empirical quantiles to produce the four bins for which the average predicted probabilities and
the observed proportion of an unfavorable outcome are computed. The confidence interval is plotted at the midpoint of the respective bin.
Average calibration across all six random splits is shown as thick line, whereas the calibration of the single splits is shown as thin lines.

Scores highlighting discriminatory ability of the models (AUC and accuracy) show similar results. Slight differences
in the ranking of models are possible because these measures are improper scoring rules (Gneiting & Raftery, 2007).
Note that SI has no discriminatory ability (AUC = 0.5) because it always predicts the most frequent class (mRS 0). The
relative test performance to the benchmark SI-LS𝒙 model (i.e., the differences in performance within splits) can be found
in Appendix B.2.
Well-calibrated predictions are hard to achieve for highly imbalanced outcomes. The calibration plots in Figure 4

show no substantial evidence for miscalibration. However, all models seem to slightly overpredict the probability for
an unfavorable outcome. This effect is most pronounced in the models based on image data only (CI𝖡, CI𝖡-Binary). The
semistructured and tabular data-only models show a slightly better calibration.

3.2 Ordinal mRS prediction

Figure 5 summarizes the test performance and calibration plots for all models in Table 1 trained and evaluated for the
ordinal mRS.
As in the binary case, the models based on image (CI𝖡, SI-CS𝖡) and tabular data only (SI-LS𝒙) show better average

prediction performances in terms of NLL, RPS, and QWK than the unconditional model (SI). And again, the most inter-
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HERZOG et al. 11

F IGURE 5 Test error (a) and calibration plots (b) of transformation ensembles (blue) and reference models (gray) evaluated for the
ordinal mRS outcome. In (a), test error is quantified in terms of negative log-likelihood (NLL), ranked probability score (RPS), and
discrimination error (1 − QWK). The average test error and 95% bootstrap (𝐵 = 1000) confidence intervals are depicted for six random splits
of the data (indicated by the different symbols). For the calibration plots in (b), the predicted probabilities are split at the 0.25, 0.5, and 0.75
empirical quantiles to produce the four bins for which the average predicted probabilities and the observed proportion of an unfavorable
outcome are computed. The confidence interval is plotted at the midpoint of the respective bin. Average calibration across all six random
splits is shown as thick line, whereas the calibration of the single splits is shown as thin lines. The 95% confidence intervals are averaged
across classes and splits.

pretablemodel based on tabular data only (SI-LS𝒙) outperforms themore flexible black box image-onlymodels, indicating
that tabular features contain more information for ordinal mRS prediction than the images (at the available sample with
only 407 patients). As in the binary case, we find no substantial evidence that using tabular and image data together in a
semistructured model (CI𝖡-LS𝒙, CI𝖡-LSmRS, or SI-CS𝖡-LS𝒙) improves average test performance compared to SI-LS𝒙 (see
Figure B.3).
In terms of calibration (Figure 5b), we again observe that allmodels overpredicted the probability for an unfavorable out-

come.
Overall, we cannot draw a definitive conclusion about which data modality (tabular or image data) is more useful

for functional outcome prediction and if adding image to tabular data aids mRS prediction. The confidence intervals
overlap largely and average test performance is similar. In particular, this can be attributed to the small sample size. In
Appendix B.3, we conclude that collecting more data could further enhance performance. When we artificially reduce
sample size via subsampling and refit all models, we find no evidence of plateauing prediction performance. However,
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12 HERZOG et al.

F IGURE 6 Pooled log odds ratios (�̂�) across all six random splits and 95% bootstrap (𝐵 = 1000) confidence intervals for all models with
linearly included tabular features (see Section 2.2). With the exception of age and NIHSS, all features are categorical and the plot shows log
odds-ratios with respect to the reference level (note that the largest observed prestroke mRS is 4). The coefficients are based on standardized
features and sorted in increasing order.

no differential increase in prediction performance is observed for the tabular-data-only model compared to the most
complex DTM.

3.3 Interpretation of model parameters

Figure 6 visualizes the effect sizes of the tabular features in the linear shift terms LS𝒙 of different models.
Because the logistic distribution is chosen for 𝑍, the coefficients 𝜷 in the linear shift term are interpretable as log odds

ratios. Comparing tabular-data-only models with semistructured models shows that adjusting for the images (in CI𝖡-LS𝒙
or SI-CS𝖡-LS𝒙) changes the �̂� estimates only slightly. The log odds ratios are comparable across all variables because the
variables are standardized. Thus, the effect sizes reflect a change in log-odds of a worse outcome for a one-standard-
deviation increase in the respective variable. Accordingly, Figure 6 shows that the strongest prognostic factors are the
prestroke mRS and NIHSS on admission. This is expected when predicting 3 months mRS. The prestroke mRS captures
functional disability of a patient before stroke, whereas NIHSS measures stroke severity on admission. This additionally
emphasizes the importance for being able to adjust for prestroke mRS.
Similar to both linear and complex shift terms, complex intercepts of categorical predictors are directly interpretable.

Here, cumulative baseline log-odds of the outcome are estimated for each stratum of the predictor. Thus, differences in
the complex intercepts can be interpreted as class-specific log-odds ratios (Buri et al., 2020). For continuous predictors or
images, this simple interpretation is lost to an extent that depends on the complexity of the neural network component
that is modeling the complex intercept term.
Alongside interpretation, quantifying uncertainty in both predictions and parameters is of high importance, but gener-

ally difficult to achieve in DL models (Wilson & Izmailov, 2020). The use of transformation ensembles and random splits
allows uncertainty quantification for the coefficient estimates in terms of bootstrap confidence intervals. This way, both
aleatoric and epistemic uncertainty are captured. Note that the model coefficients of the five (members) times six (splits)
are repeatedly sampled and that the models are not additionally refitted to obtain the 95% confidence intervals.
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HERZOG et al. 13

F IGURE 7 The smooth log-odds function for
age fitted by a GAM (a generalized additive
proportional odds model using the mgcv package),
depicted as blue solid line along with pointwise 95%
confidence band (dashed lines), and by a DTM
(SI-LS�̃�-CSage) fitted on 50 bootstrap samples,
depicted as gray lines. In addition, the linear effect
of an SI-LS𝒙 is displayed (red line). Although both
models, GAM and DTM, allow for a nonlinear effect
in age, there is no evidence against a linear effect of
age.

To investigate if assuming a linear age effect is appropriate, we evaluate models including the age effect with a flexible
function, 𝜃𝑘 − 𝛾(𝑥age) − 𝒙⊤

−age𝜷. We show the results of a GAM (a generalized additive proportional odds model) and a
DTM (SI-LS𝒙-CSage) that depict the estimated age effect function as shown in Figure 7. The GAM and the DTM agree in
the functional form of the effect, which is constant up to a standardized age of 0.5 (corresponding to an age of 75 years)
and then increases the odds for a worse outcome. However, there is no evidence against a linear effect when we consider
the pointwise confidence band for the GAM. Note how the GAM enforces smoothness of the estimated function, whereas
the neural network produces a piecewise linear estimate.

4 SUMMARY AND OUTLOOK

DTMs provide a novel and flexible way to integrate multimodal data for interpretable prediction models for various kinds
of outcomes. We demonstrate the potential of DTMs on a semistructured data set with an ordinal outcome (mRS) describ-
ing the functional disability of stroke patients 3months after hospital admission.Wediscuss how the best trade-off between
interpretability and flexibility can be achieved. In essence, we follow the top-down model approach to model building for
TMs (Hothorn, 2018).
By investigating the interpretablemodel parameters, we judge the relative importance of the predictors and show that in

a baseline-adjusted DTMs, the baselinemRS is the variable with themost relevant predictive effect.We also investigate the
question, which input modality is most important for functional outcome prediction and whether predictive performance
in terms of NLL and calibration can be improved by including both tabular and imaging data. While for binary mRS
prediction, models seemed to slightly benefit from the addition of brain imaging data, this is not observed for ordinal mRS
prediction. In general, a definitive judgment on whether the images contain information to aid mRS prediction cannot be
made. This is because all results have to be interpreted conditional on (i) the small sample size and (ii) limited computation
time for joint hyperparameter tuning.
When artificially increasing the sample size up to the available 407 patients, there is no evidence for differential per-

formance gain of the semistructured over tabular-data-only models. However, extrapolating these results to larger sample
sizes is in general extremely difficult.
In general, DNNs (including DTMs) are difficult to train with limited sample size and require a carefully chosen opti-

mization procedure. For instance, transfer learning in terms of adapting the weights of a CNN that is already trained on a
different data set by retraining it with the data of interest potentially improves predictive performance even with smaller
sample sizes. However, methods for transferring the weights of well-known 2D CNN architectures to their 3D counter-
parts did not improve predictive performance in our application (results not shown). In general, it is difficult to access
weights of trained 3D CNNs to then fine-tune the models.
For ordinal functional outcome prediction in our cohort, themodel SI-LS𝒙 seemed to bemost appropriate when includ-

ing tabular features only and modeling them as linear effects. Here, classical statistical inference provides uncertainty
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14 HERZOG et al.

measures (confidence intervals) and the model is fully interpretable. Using semistructured models, including tabular and
brain imaging data, improved binary mRS prediction to some extent. However, including images as a complex intercept
or complex shift reduced interpretability of the model and increased variability.
TMs also work naturally for other kinds of outcomes, such as survival times, which often feature censored observations

(e.g., Hothorn et al., 2018). Because the dichotomized mRS could be viewed as a censored version of the ordinal mRS,
the very same models, trained on ordinal outcomes, can also be used for different dichotimizations (or binnings) of the
ordinal outcome, without the need to refit the models on the binned outcome (Lohse et al., 2017).
In summary, being able to fit distributional regression models with complex outcome types and multimodal input

data and following statistical principles for model building opens up vast areas of applications. Especially in medicine,
these models have the potential to aid decision-making, because of their state-of-the-art prediction performance
and transparency.

ACKNOWLEDGMENTS
The research of LH, LK, SW, and BS was supported by Novartis Research Foundation (FreeNovation 2019) and by the
Swiss National Science Foundation (grant no. PP00P3-202663, S-86013-01-01 and S-42344-04-01). OD was supported by
the Federal Ministry of Education and Research of Germany (grant no. 01IS19083A).

CONFL ICT OF INTEREST
The authors declare that they have no conflict of interest.

DATA AVAILAB IL ITY STATEMENT
The dataset cannot be made available at this moment.

OPEN RESEARCH BADGES
This article has earned an Open Data badge for making publicly available the digitally-shareable data necessary to

reproduce the reported results. The data is available in the Supporting Information section.

This article has earned an open data badge “Reproducible Research” for making publicly available the code necessary
to reproduce the reported results. The results reported in this article were reproduced partially due to data confidentiality
issues and their computational complexity.

ORCID
LucasKook https://orcid.org/0000-0002-7546-7356

REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.,
Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., . . . Zheng, X. (2015). TensorFlow: Large-scale machine learning
on heterogeneous systems. Software available from tensorflow.org. http://tensorflow.org/

Bacchi, S., Zerner, T., Oakden-Rayner, L., Kleinig, T., Patel, S., & Jannes, J. (2020). Deep learning in the prediction of ischaemic stroke
thrombolysis functional outcomes: A pilot study. Acadamic Radiology, 27, 19–23.

Baumann, P. F. M., Hothorn, T., & Rügamer, D. (2021). Deep conditional transformationmodels. InMachine Learning and Knowledge Discovery
in Databases. Research Track (pp. 3–18). Springer International Publishing.

Benjamine, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Das,
S. R., Delling, F. N., Djousse, L., Elkind, M. S. V., Ferguson, J. F., Fornage, M., Jordan, L. C., Khan, S. S., Kissela, B. M., Knutson, K. L., . . .
Virani, S. S. (2019). Heart Disease and Stroke Statistics – 2019 Update: A report from the American Heart Association. Circulation, 139(10),
56–528.

Bröcker, J., & Smith, L. A. (2007). Scoring probabilistic forecasts: The importance of being proper.Weather and Forecasting, 22(2), 382–388.
Buri, M., Curt, A., Steeves, J., & Hothorn, T. (2020). Baseline-adjusted proportional odds models for the quantification of treatment effects in
trials with ordinal sum score outcomes. BMCMedical Research Methodology, 20(1), 1–14.

Campanella, G., Hanna, M. G., Geneslaw, L., Miraflor, A., Silva, V. W. K., Busam, K. J., Brogi, E., Reuter, V. E., Klimstra, D. S., & Fuchs, T.
J. (2019). Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature Medicine, 25(8),
1301–1309.

Chollet, F. (2015). Keras. https://keras.io
Copen, W. A., Schaefer, P. W., & Wu, O. (2011). Mr perfusion imaging in acute ischemic stroke. Neuroimaging Clinics of North America, 21,
259–283.

 15214036, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202100379 by U
niversitätsbibliothek Z

uerich, W
iley O

nline L
ibrary on [07/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-7546-7356
https://orcid.org/0000-0002-7546-7356
http://tensorflow.org/
https://keras.io


HERZOG et al. 15

Ebisu, T., Tanaka, C., Umeda, M., Kitamura, M., Fukunaga, M., Aoki, I., Sato, H., Higuchi, T., Naruse, S., Horikawa, Y., & Ueda, S. (1997).
Hemorrhagic and nonhemorrhagic stroke: Diagnosis with diffusion-weighted and t2-weighted echo-planar mr imaging. Radiology, 203(3),
823–828.

Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association,
102(477), 359–378.

Good, I. J. (1952). Rational decisions. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 14(1), 107–114.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Grotta, J. C., Albers, G. W., Broderick, J. P., Kasner, S. E., Lo, E. H., Mendelow, A. D., Sacco, R. L., &Wong, L. K. (2016). Stroke: Pathophysiology,
diagnosis, and management, 6th ed Elsevier.

Hamann &Herzog, J. L., Wehrli, C., Dobrocky, T., Bink, A., Piccirelli, M., Panos, L., Kaesmacher, J., Fischer, U., Stippich, C., Luft, J., Gralla, A.
R., Arnold, M., Wiest, R., Sick, B., &Wegener, S. (2021). Machine-learning based outcome prediction in stroke patients with middle cerebral
artery-m1 occlusions and early thrombectomy. European Journal of Neurology, 28, 1234–1243.

Hothorn, T. (2018). Top-down transformation choice. Statistical Modelling, 18(3–4), 274–298.
Hothorn, T. (2020). tram: Transformation models. R package version 0.5-1. https://CRAN.R-project.org/package=tram
Hothorn, T., Kneib, T., & Bühlmann, P. (2014). Conditional transformation models. Journal of the Royal Statistical Society. Series B (Statistical
Methodology), 76(1), 3–27.

Hothorn, T., Möst, L., & Bühlmann, P. (2018). Most Likely Transformations. Scandinavian Journal of Statistics, 45(1), 110–134.
Jafari, S. H., Saadatpour, Z., Salmaninejad, A., Momeni, F., Mokhtari, M., Nahand, J. S., Rahmati, M., Mirzaei, H., & Kianmehr, M. (2018).
Breast cancer diagnosis: Imaging techniques and biochemical markers. Journal of Cellular Physiology, 233(7), 5200–5213.

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations, ICLR. https://arxiv.org/abs/1412.6980v9

Kneib, T., Silbersdorff, A., & Säfken, B. (2021). Rage against the mean–a review of distributional regression approaches. Econometrics and
Statistics. https://doi.org/10.1016/j.ecosta.2021.07.006

Kook, L., Götschi, A., Baumann, P. F., Hothorn, T., & Sick, B. (2022a). Deep interpretable ensembles. arXiv preprint.
Kook, L., Herzog, L., Hothorn, T., Dürr, O., & Sick, B. (2022b). Deep and interpretable regression models for ordinal outcomes. Pattern
Recognition, 122, 108263.

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles.
In Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf

Lohse, T., Rohrmann, S., Faeh, D., & Hothorn, T. (2017). Continuous outcome logistic regression for analyzing body mass index distributions.
F1000Research, 6, 1933.

McCullagh, P. (1980). Regressionmodels for ordinal data. Journal of the Royal Statistical Society: Series B (StatisticalMethodology), 42(2), 109–127.
Pinto, A., McKinley, R., Alves, V., Wiest, R., Silva, C. A., & Reyes, M. (2018). Stroke lesion outcome prediction based on mri imaging combined
with clinical information. Frontiers in Neurology, 9, 1060.

Quinn, T. J., Dawson, J.,Walters,M., &Lees, K. R. (2009). Reliability of themodifiedRankin scale: A systematic review. Stroke, 40(10), 3393–3395.
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.
org/

Rezende, D., & Mohamed, S. (2015). Variational inference with normalizing flows. In International Conference on Machine Learning (pp. 1530–
1538). PMLR. https://proceedings.mlr.press/v37/rezende15.html

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature
Machine Intelligence, 1(5), 206–215.

Rügamer, D., Baumann, P. F., Kneib, T., & Hothorn, T. (2021). Transforming autoregression: Interpretable and expressive time series forecast.
arXiv preprint at arXiv:2110.08248. https://arxiv.org/abs/2110.08248

Rügamer, D., Kolb, C., & Klein, N. (2020). A unifying network architecture for semi-structured deep distributional learning. arXiv preprint
arXiv:2002.05777. https://arxiv.org/abs/2002.05777

Sick, B., Hothorn, T., & Durr, O. (2021). Deep transformation models: Tackling complex regression problems with neural network based
transformation models. In 2020 25th International Conference on Pattern Recognition (ICPR). IEEE.

Siegfried, S., & Hothorn, T. (2020). Count transformation models.Methods in Ecology and Evolution, 11(7), 818–827.
Stasinopoulos, D. M., & Rigby, R. A. (2007). Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical
Software, 23(7), 1–46.

Steyerberg, E. W. (2019). Clinical prediction models. Springer.
Thiran, J. P., & Macq, B. (1996). Morphological feature extraction for the classification of digital images of cancerous tissues. IEEE Transactions
on Biomedical Engineering, 43, 1011–1020.

Weisscher, N., Vermeulen, M., Roos, Y. B., & De Haan, R. J. (2008). What should be defined as good outcome in stroke trials; a modified Rankin
score of 0–1 or 0–2? Journal of Neurology, 255(6), 867–874.

Wilson, A. G., & Izmailov, P. (2020). Bayesian deep learning and a probabilistic perspective of generalization. InAdvances in Neural Information
Processing Systems (NeurIPS). https://arxiv.org/abs/2002.08791

Wood, S. N. (2017). Generalized additive models: An introduction with R, 2nd ed. Chapman and Hall/CRC.

 15214036, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202100379 by U
niversitätsbibliothek Z

uerich, W
iley O

nline L
ibrary on [07/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://CRAN.R-project.org/package=tram
https://arxiv.org/abs/1412.6980v9
https://doi.org/10.1016/j.ecosta.2021.07.006
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://www.R-project.org/
https://www.R-project.org/
https://proceedings.mlr.press/v37/rezende15.html
https://arxiv.org/abs/2110.08248
https://arxiv.org/abs/2002.05777
https://arxiv.org/abs/2002.08791


16 HERZOG et al.

SUPPORT ING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Herzog, L., Kook, L., Götschi, A., Petermann, K., Hänsel, M., Hamann, J., Dürr, O.,
Wegener, S., & Sick, B. (2022). Deep transformation models for functional outcome prediction after acute ischemic
stroke. Biometrical Journal, 1–18. https://doi.org/10.1002/bimj.202100379

APPENDIX A: COMPUTATIONAL DETAILS
For reproducibility, all code is made publicly available on GitHub https://www.github.com/LucasKookUZH/dtm-usz-
stroke.

A.1 Neural network architectures
The SI terms aremodeled with a fully connected single-layer NNwithout hidden layers and linear activation. No bias term
is used. The number of output nodes is always equal to the number of classes minus one, whereas the input is a vector
of ones.
The linear shift terms for the tabular data are modeled with fully connected NNs without hidden layers and a linear

function as activation. No bias term is used. The number of input units is equal to the number of tabular features, whereas
the number of units in the last layer is equal to one.
The complex shift term for the variable age is modeled with a fully connected NN with two hidden layers with 16

units each, ReLU activation function, and 𝐿2 regularization. The number of units in the last layer is equal to one and the
activation function in this layer is linear.
The complex intercept and complex shift terms for the image data are modeled with a 3D CNN. The convolutional part

of the 3D CNN consists of four convolutional blocks including a convolutional layer with filter size 3 × 3 × 3 and a max
pooling layer of size 2 × 2 × 2. The first two layers use 32 filters, the following two use 64 filters. The subsequent fully
connected part consists of two fully connected layers with 128 filters each, which are separated by a dropout layer with
dropout rate 0.3. The activation function in all layers, expect the last one, is the ReLU nonlinearity. In case the image data
are included as complex intercept term, the number of units in the last layer is equal to the number of classes minus one,
that is, one when we predict the binary mRS and 6 when we predict the ordinal mRS. When integrated as complex shift
term, the number of units in the last layer is equal to one. The activation function in the last layer is linear.

A.2 Training
All models are fitted with stochastic gradient descent using the Adam optimizer (Kingma & Ba, 2015) with a learning rate
of 5 × 10−5 and a batch size of six. We then use the model with the best performance on the validation data in terms of
NLL. For all experiments, the 3D images were augmented in x- and y-direction prior to every epoch using the parameters
in Table A.1.
All models are implemented in R 4.1.2 (R Core Team, 2020). The models are written in Keras based on TensorFlow

backend using TensorFlow version 2.2.0 (Chollet et al., 2015; Abadi et al., 2015) and trained on a GPU. Linear propor-
tional odds models and generalized additive proportional odds models are fitted using tram::Polr (Hothorn, 2020) and
mgcv::gam (Wood, 2017), respectively.

TABLE A . 1 Parameter values for augmentation

Parameter Value
Rotation range 20
Width shift range 0.2
Height shift range 0.2
Shear range 0.15
Zoom range 0.15
Fill Nearest
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APPENDIX B: ADDITIONAL RESULTS
Here, we present descriptive statistics and additional results.

B.1 Baseline characteristics
Figure B.1 shows the distribution of predictors stratified by the outcome (90 day mRS) in the stroke data set.

B.2 Test errors relative to reference model
Figures B.2 and B.3 show the test errors relative to the reference SI-LS𝒙 model evaluated on the binary and ordinal mRS,
respectively. After removing the between-split variance, none of the semistructured models improve significantly upon
the performance of the SI-LS𝒙 model. Since the SI-LS𝒙 performance was not bootstrapped (the constant split-wise mean
was subtracted within split), there is no variance in the average AUC and QWK (because the SI model does not have any
discriminatory ability, that is, AUC = 0.5 and QWK = 0) across splits for the unconditional SI model.

F IGURE B . 1 Baseline characteristics stratified by 90 day mRS in the stroke data set

F IGURE B . 2 Test error of transformation ensemble models (blue) and reference model (gray) evaluated for the binary mRS outcome
(mRS 0–2 vs. mRS 3–6) relative to the test error of the benchmark SI-LS𝒙 model (i.e., a difference of 0 indicates the same performance as the
SI-LS𝒙 model). The test error is quantified in terms of binary negative log-likelihood (NLL), Brier score, 1− AUC, and classification error
(1 − ACC). The average test error and 95% bootstrap (𝐵 = 1000) confidence intervals (CI) are depicted for six random splits (indicated by
different symbols). The CIs are calculated by substracting the fixed SI-LS𝒙 performance per split.
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F IGURE B . 3 Test error of transformation ensemble models (blue) and reference model (gray) evaluated for the ordinal mRS outcome
relative to the test error of the benchmark SI-LS𝒙 model (i.e., a difference of 0 indicates the same performance as the SI-LS𝒙 model). The test
error is quantified in terms of negative log-likelihood (NLL), ranked probability score (RPS), and discrimination error (1 − QWK). The
average test error and 95% bootstrap (𝐵 = 1000) confidence intervals (CI) are depicted for six random splits (indicated by different symbols).
The CIs are calculated by substracting the fixed SI-LS𝒙 performance per split.

F IGURE B . 4 Test performance versus sample size achieved by a subsampling experiment. The semistructured CI𝖡-LS𝒙 model and the
proportional odds model SI-LS𝒙 are compared. Both models are fitted to 30 random sub-samples of seven different sample sizes of the original
sample size (𝑛 = 407) and the test NLL is recorded. Both models benefit from increasing sample size. The right panel displays the differences
in NLL within split for a given sample size (i.e., the negative log-likelihood ratio NLLR).

B.3 Sample size
DL typically requires thousands of training images to excel at prediction performance over conventional statistical models
(Goodfellow et al., 2016). However, our cohort, like most medical data sets, containedmuch fewer observations (𝑛 = 407).
To study if collecting more data was a promising approach to enhance the model performance, we artificially reduced
sample size by subsampling and refitted the models (see Figure B.4).
In this experiment, the sample size is artificially reduced via subsampling of varying sizes, and then, the prediction

performance was measured on a hold-out set of the reduced data set. Subsampling is repeated for seven sample sizes and
then 30 train/validation/test splits (with a ratio of 8:1:1) are used for fitting and evaluating the semistructured CI𝖡-LS𝒙
and tabular-data-only model SI-LS𝒙. We observe that the prediction performance, that is, the test NLL, improves for both
models with increasing sample size, indicating that the performancemay further increasewith increasing sample size (left
panel of Figure B.4). Directly comparing the performance of bothmodels for the individual splits suggests no evidence that
adding the image information to themodel that contained the tabular data as input improves prediction performance. The
negative log-likelihood ratio fluctuates around zero and no trend with increasing sample size is observable (right panel in
Figure B.4).
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